

Monodisperse Chromatography Media

Contents

About NanoMicro			1
Product Guide			6
Silica Chromatography Media	7	Polymeric Chromatography Media	25
Normal Phase Silica Gel UniSil® UniSil® Diol UniSil® NH2 UniSil® CN	10	Reverse Phase Resins UniPS® Uni® PSN Uni® PMM	25
UniSil® HILIC HILIC Silica Gel	12	Affinity Resins Protein A Affinity: UniMab® Metal Chelating Affinity: UniNTA & UniIDA Boronic Acid Affinity: UniPB Heparin Affinity: UniHeparin	29
Reverse Phase Silica Gel UniSil® C18 UniSil® C8 UniSil® C4 UniSil® Ph UniSil® PFP	14	Ion Exchange Resins Uni Series: UniCM, UniSP, UniDEAE, UniQ, UniMSP UniGel Series: UniGel-CM, UniGel-DEAE, UniGel-Q, UnC Nano Series: NanoQ / NanoSP NanoGel Series: NanoGel-50SP / NanoGel-50Q	36 Gel-SP
UniSil® PBB UniSil® Ultra UniSil® Ultra Plus Uni® Insulin C8 UniSil® PBM & PTZ		HIC Resins UniHR Butyl UniHR Phenyl	45
Chiral Chromatography Media UniChiral® CND UniChiral® CNJ UniChiral® CNZ UniChiral® CMD UniChiral® CMS	23	Solid Phase Extraction Sorbents UniBPC UniRPC UniMC NM BPC UniSil C18	46
Application Guide			47
			•••
Small Molecules Purification		Large Molecules Purification	
Insulin	48	Antibody Recombinant Proteins	58 60
Peptide Antibiotics & Antifungals	50 52	Virus & Vaccines	62
Natural Products	55	Abbreviations	63
Chiral Separation	56	, 10010410110	00

About NanoMicro

Our Development

Established in Biobay, Suzhou in 2007, NanoMicro is leading the world in the manufacture of Mono-disperse Silica and Polymeric Chromatography Media with two ISO9001-certified production sites, one in Nanopolis (13000 sqm) and another in Changshu (26000 sqm) to ensure security of supply for our customers. The maximum production capacity is 110,000L or 24000 kg per year with batch sizes up to 200kg or 1000L.

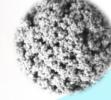
2019

18000m² State-of-the-Art Manufacturing Facility at Changshu

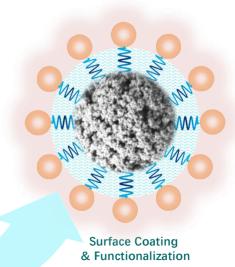
Suzhou Industrial Park

and Manufacturing Facility at Nanopolis,

2007


Dr Biwang Jiang founded NanoMicro at Biobay, Suzhou Industrial Park

Our Core Technologies & Competence


- World leading technologies to produce monodisperse silica and polymeric particles as well as proprietary expertise in controlling particle morphology and surface chemistry
- Large commercial scale manufacturing capability and dual production sites for security of supply
- Rigorous quality assurance and customer-focused culture
- Strong R&D and Application teams for sustainable innovation

Monodisperse particles

Our Major Products

Monodisperse chromatography media of high performance for analytical UPLC & HPLC, preparative and process scale purification, as well as SPE sample preparation.

Matrices:

Silica

Polymeric

Normal Phase

RPC
Chiral
IEX
HIC
Affinity
Protein A

Normal Phase

UHPLC
PREP

PREP

10 μm

10 μm

10 μm

10 μm

Rigorous Manufacturing Process Results in Precise Media for Better Chromatographic Performance

Custom Resin & Chromatography Process Development

NanoMicro also provides services of custom chromatography media development and separation process development. Our dedicated R&D and Application team, "state-of-the art" pilot and manufacturing facilities, and rigorous quality assurance system, provide customers high quality services in a timely manner.

Production Trains

Advanced Process Control System

Application Lab

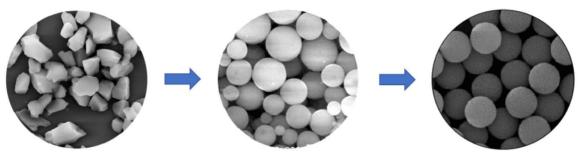
Our Quality Policy

NanoMicro takes pride in delivering innovative products and services to the highest quality standards. Within NanoMicro we are committed to:

- A clear focus on our customer's needs and satisfaction in all products and services.
- ➤ The maintenance of a Quality Management System including quality policies, objectives, and metrics that meet customer requirements while satisfying NanoMicro's business goals.
- Continual improvement in the effectiveness of NanoMicro's Quality Management System.
- Compliance with all applicable regulatory and statutory requirements

These commitments will be met through documented quality objectives, shared quality culture, commitment to performance, and unyielding integrity,

Our Customers Worldwide


NanoMicro products have been used by international companies since 2013. Our customers includes well known international and domestic bio/pharmaceutical companies, API producers and life science companies,

Why Monodisperse?

The significant advances in chromatography have always followed the appearance of enhanced support matrices!

From 1st generation irregular silica to 3rd generation monodisperse spherical silica media

1st Generation Irregular Silica

2nd Generation Spherical Silica

3rd Generation Monodisperse Silica

Overcoming the limitations of polydisperse particle sizes in chromatography

Uneven Flow /Diffusion

- Uneven flow velocities through the column
- Uneven diffusion pathlength in particles of different size
- Uneven flow path
- Increase Eddy diffusion
- Inefficient mass transfers
- Zone mixing

Limitations

Band broadening

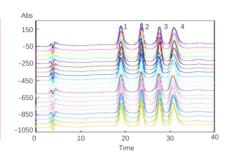
- Loss in resolution
- Lower chromatographic efficiency
- Loss in recovery
- Poor product quality

Poor Mass Transfer

Diffusion is the main mode of mass transfer in porous particle chromatography. Uneven diffusion pathlengths in different particle sizes and shapes in polydisperse media lead different times of elution of the molecules out of the particles leading to band broadening and consequently a loss in recovery and process economy. This limitation can be overcome by using spherical monodisperse media

Polydisperse Media Monodisperse Media

Varying diffusion pathlengths in polydisperse particles


Similar diffusion pathlengths in monodisperse particles

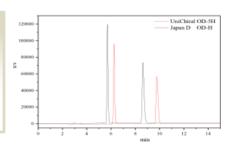
Features/Benefits of NanoMicro Monodisperse Media

Features

Rigorous manufacturing process resulted in precise and consistent media

Performance

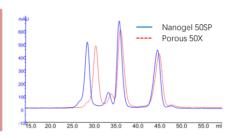
Benefits


Precise Lot-to-Lot Reproducibility

Highlly consistent and reproducible separations of 4 model proteins from 20 consecutive batches of NanoMicro UniPS® 40-300 Samples:

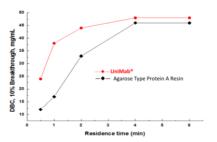
- 1.. Ribonuclease
- 2.. Insulin
- 3.. Lysozyme
- 4.. BSA

Uniformed particle size


- · Less band broadening
- Less Eddy diffusion
- Less mass transfer resistance

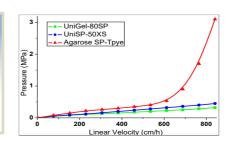
Better HETP & asymmetry

Theoretical Plates		retical Plates Tailing Factor		a	
UniChiral*	Japan D	UniChiral*	Japan D	UniChiral*	Japan E
16222	15267	1.149	1.214		2.07
14779	13740	1 345	1.437		2.07
Mobile Flow ra	phase: I ate: 1mL/			3011111	
Detect	ion: UV 2	254nm			
Tempe		F 00			


- ➤ Optimal pore structure
- ➤ Uniformed particle size
- Unique selectivity

Higher resolution

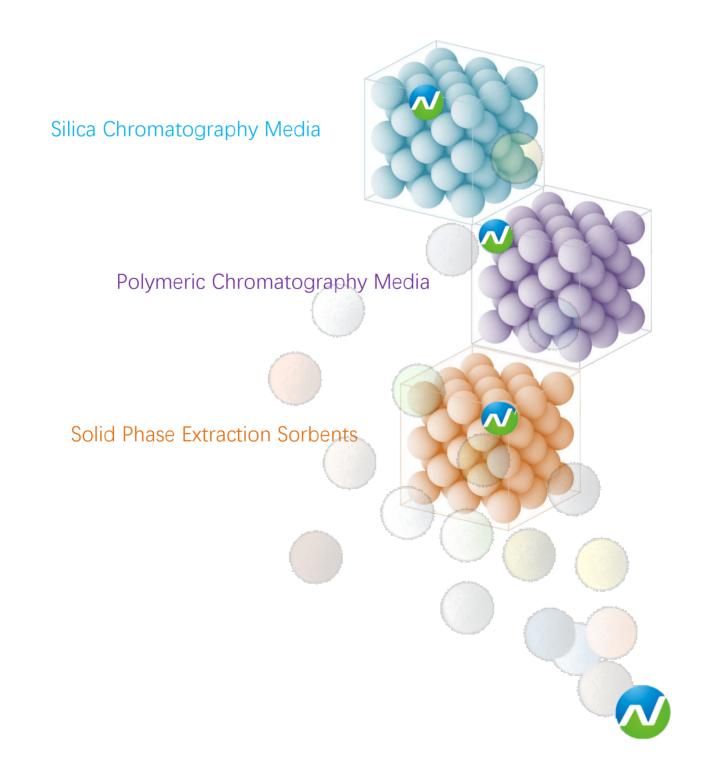
Column: 4.6x200mm Buffer A: 20mM MES, pH6.2 Buffer B: 20mM MES/1.0M NaCl, pH6.2 Gradient Elution: 0-100% B, 16CV Sample: chymotrypsinogen A/ cytochrome C/lysozyme Flow Rate: 300cm/h


- Optimal pore structure
- Uniformed particle size

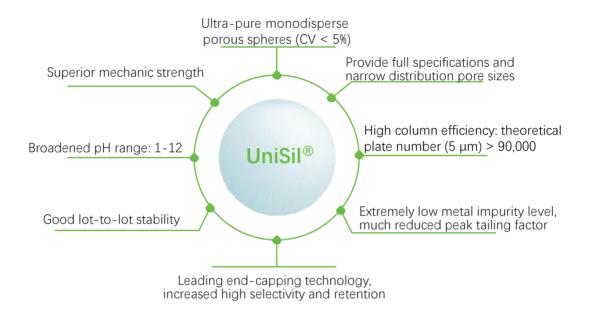
Faster mass transfer, more concentrated elution, and less buffer consumption

NanoMicro UniMab has much higher dynamic binding capacity than Agarose type Protein A at low residence time indicating UniMab has better mass transfer due to more open pore structure.

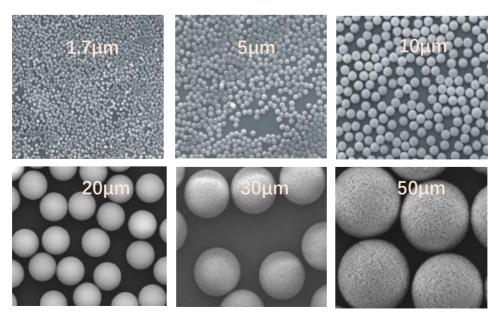
- > Lower back pressure
- Less risk for fouling or clogging
- ➤ Possible to use larger mesh size filters/nets



Fast, robust, longer Lifetime


Comparison of Pressure/flow curves of UniGel-80SP vs a top-ranked Agarose analogous and UniPS-50XS, a highly rigid poly(styrene-divinylbenzene) resin (Test column: 4.6×200mm; mobile phase: water; temperature:25°C). System/tubing pressure is excluded.

Product Guide

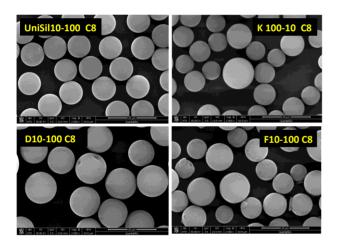

Monodisperse Chromatography Media

UniSil® - Silica Based Chromatography Media

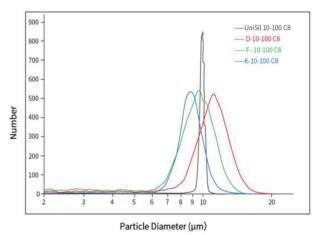
UniSil® is a series of monodisperse spherical silica gel designed as matrices for high performance liquid chromatography (HPLC) analysis and purification. Developed by Suzhou NanoMicro with its unique patented technology, all UniSil® products have distinct features such as uniformed particle size, perfectly spherical shape, and outstanding mechanical strength. In addition, NanoMicro's "State-of-the-Art" microsphere precision manufacturing enables UniSil® products excellent lot-to-lot consistency as well as well-tailored pore size and particle size to serve varied application. All these features provide UniSil® products competitive advantages such as high column efficiency, robust column packing and repacking, quality consistency, etc. UniSil® products have already been widely used in both laboratory and industrial scale separation of synthetic compounds, natural products, and many biomolecules. Through strong offering of the UniSil® product line at commercial scale, NanoMicro is proud to be a leading provider of silica chromatography media.

Representative SEM micrographs of UniSil® silica of varied particle sizes. Note their uniformed sizes and perfectly spherical shapes.

Features and Benefits of UniSil® Products

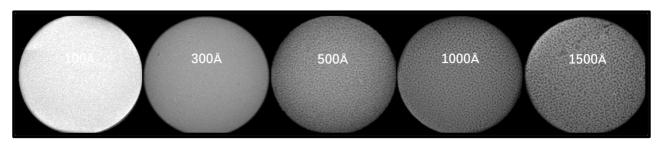

Features	Benefits
High uniformity of particle size and perfect spherical shape	High column efficiency and resolution, low back pressure
High mechanical strength	Robust column packing and repacking, long lifetime
Well-tailored pore and particle sizes	High loading capacity and high selectivity
Unique surface bonding technology	Good acid and alkaline resistance, broad application pH range
Large scale production and lot-to-lot consistency	Consistent product quality, short delivery cycle

Product Highlights


Uniformed particle size and perfectly spherical shape

Made using the unique patented technologies, all UniSil® silica medias have precise particle sizes with unparalleled high uniformity and perfectly spherical shape. Therefore, UniSil® products have advantages over conventional silica chromatography media, such as high column efficiency and reduced frit plugging risk.

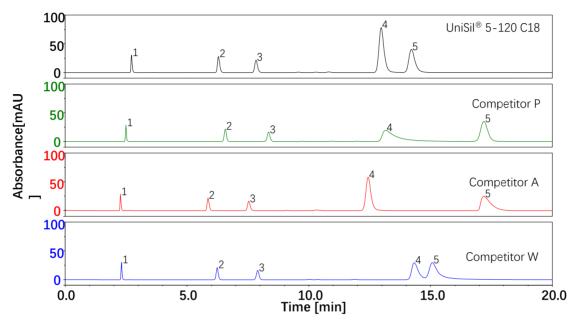
Comparison of UniSil®10-100 C8 and analoques from top ranked international brands



Particle size distribution of UniSil®10-100 C8 and analogues frpm top-ranked international brands

• Well-tailored pore structure

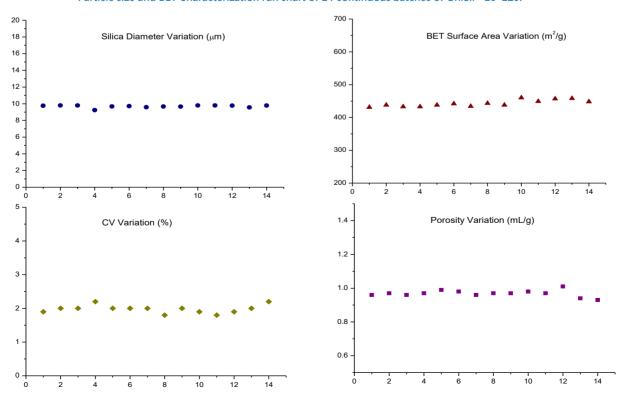
The pore structure of silica gel has a great influence on its mechanical strength, separation ability, and loading capacity. UniSil® products have not only precisely controlled particle size and size distribution, but also offer tailored pore size and pore volume to provide optimal performance for varied chromatography applications.



Representative SEM images of UniSil® silica with varied pore sizes.

High quality surface bonding

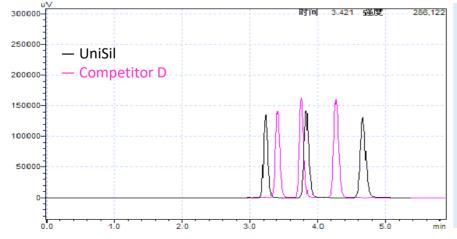
In addition to the world leading technology of making silica gel, NanoMicro has developed advanced techniques of surface bonding and end-capping to make bonded phase UniSil® products (C18, C8, C4, Phenyl, NH₂, CN, Diol,etc.) of competitive performance such as high selectivity and high peak symmetry. The sharper and more symmetric peaks of the UniSil® column indicate high quality bonding and end-capping in the product.



Large scale production capability and lot-to-lot consistency

NanoMicro's state-of-the-art manufacturing facilities and rigorous quality control enable the production of UniSil® media with excellent batch-to-batch consistency and scalability, meeting the demand of today's industrial separation for reproducibility and reliability of supply.

Particle size and BET Characterization run chart of 14 continuous batches of UniSil® 10-120.


Normal Phase Silica Gels

UniSil® normal phase silica gel from NanoMicro Tech are ultra-high purity monodisperse silica microspheres (purity >99.999%; CV<3%) produced by a patented technology. Polar functional groups richly cover the surface of the microspheres in which the residual metal contents are extremely low thereby enabling optimal retention and symmetrical peaks for excellent resolution. Two types of functional surface are provided: silanol (unbonded) and diol groups that especially suitable for separation of polar compounds with peak tailing.

Product Offering Information

Product Name	Structure of Functional Groups	Particle Size (μm)	Pore Size (Å)	Specific surface area m ² /g	Bulk Density	Carbon Content (%)	pH Rage	
			100	~450	~0.50	/		
			120	~350	~0.50	/		
		1.7/2.0/2.7/3/5	200	~200	~0.45	/		
LL:C:I®	,	/5L/8/10	300	~100	~0.40	/	2.0	
UniSil®	/		500	~50	~0.40	/	2~8	
				1000	~30	~0.40	/	
			15/20/	100	~450	~0.50	/	
		30/50	120	~350	~0.50	/		
UniSil® Diol	OH OOH OO R	3/5/10	120	~350	~0.50	7	2~8	
UniSil® NH ₂	NH ₂	3/5/10	120	~350	~0.50	5	2~8	
UniSil® CN	CN R Si R	3/5/10	120	~350	~0.50	8	2~8	

Comparison of UniSil® with top-ranked competitors

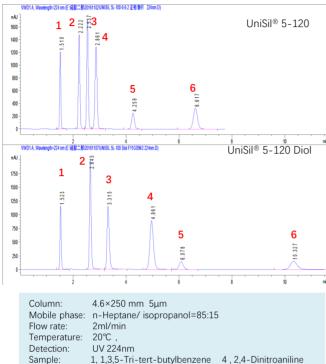
Column: 4.6×250 mm, $5 \mu m$

Sample: Toluene,

p-chloronitrobenzene,

nitrobenzene

Mobile Phase: n-Hexane /Isopropanol=99.5:0.5

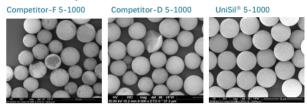

Flow Rate: 1.0 mL/min
Detection: UV 254 nm

Normal Phase Silica Gels

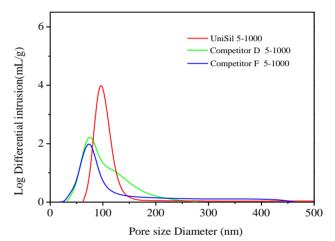
UniSil® Diol Silica Media

UniSil® Diol is supplementary to bare silica media in separation and analysis applications. While gradient elution should be adopted by using bare silica media, a simple isocratic elution will lead to good result by using Unisil® Diol media.

Difference in analysis between UniSil® and UniSil® Diol



5, Hydroquinone


6. 4-Nitroaniline

UniSil® Macroporous Silica Media

UniSil® macroporous silica media is mono-sized silica gels of very large pore sizes. Produced by NanoMicro Tech with its unique proprietary technologies, UniSil® Macroporous has distinct features such as highly uniformed particle size, narrow pore size distribution, high purity and outstanding mechanical strength which enable them to be the ideal chromatography matrices for high mass transfer or large molecule analytes.

SEM of UniSil® 5-1000 and two competitors

Pore size distribution of UniSil® 5-1000 and two competitors

Ordering Information

3. Catechol

2, 2-Ethoxyaniline

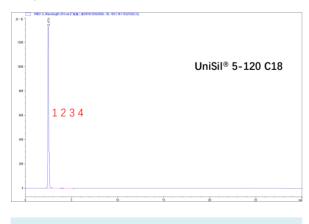
			Diameter	Pore Size	
Series	Cat. No.	Product Name	μm	Å	Package Size
	19000-017010	UniSil® 1.7-100	1.7	100	10 50
	19000-027012	UniSil® 2.7-120	2.7	120	10g, 50g 100g, 500g
	19000-030012	UniSil® 3-120	3	120	100g, 500g 1kg
	19000-050012	UniSil® 5-120	5	120	<u> </u>
	19000-080012	UniSil® 8-120	8	120	
	19000-100010	UniSil® 10-100	10	100	100 500
	19000-100012	UniSil® 10-120	10	120	100g, 500g 1kg, 5kg
UniSil®	19000-200012	UniSil® 20-120	20	120	10kg, 20kg
Normal Phase	19000-300012	UniSil® 30-120	30	120	3, - 3
	19000-500012	UniSil® 50-120	50	120	
	19009-050012	UniSil® 5-120 Diol	5	120	10g, 50g
	19008-050012	UniSil® 5-120 CN	5	120	100g, 500g
	19005-050012	UniSil® 5-120 NH ₂	5	120	1kg
	19009-100012	UniSil® 10-120 Diol	10	120	100g, 500g
	19008-100012	UniSil® 10-120 CN	10	120	1kg, 5kg
	19005-100012	UniSil® 10-120 NH ₂	10	120	10kg, 20kg
	19000-030100	UniSil® 3-1000	3	1000	
	19000-030150	UniSil® 3-1500	3	1500	10 50
UniSil [®]	19000-050100	UniSil® 5-1000	5	1000	10g, 50g 100g, 500g
Macroporous	19000-050150	UniSil® 5-1500	5	1500	100g, 500g 1kg
	19000-100100	UniSil® 10-1000	10	1000	.9
	19000-100150	UniSil® 10-1500	10	1500	

Note: Particle size and/or pore size can be customized upon request.

HILIC Silica Gels

UniSil® HILIC

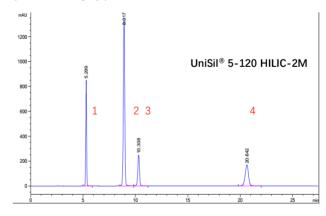
UniSil® HILIC silica gel is a new generation of HILIC medias developed by NanoMicro's unique technologies of surface passivation and bonding, which enable it with multiple functions such as hydrophilic, separation and distribution. Moreover, up to 60% H_2O solution can be used as mobile phase. UniSil® HILIC is a better choice than reversed phase silica gel for highly polar and hydrophilic molecules, especially for strong alkaline chemicals. It enhanced the sensitivity of LC-MS, due to the high proportion of volatile mobile phases that can be used.


Characteristics of UniSil® HILIC Series of Media

Product Name	Structure of Functional Group	Particle Size (μm)	Pore Size (Å)	Surface Area m²/g	Bulk Density	Carbon Conten t (%)	pH Rage	Applications
UniSil® HILIC-T	2 Z=Z	3/5/10	120	~350	~0.50	5	2-8	Separation of oligosaccharides, glycine and chemicals with similar molecule.
UniSil [®] HILIC- 2M	N N N N N N N N N N N N N N N N N N N	3/5/10	120	~350	~0.50	6	2-8	Separation of melamine, streptomycin and chemicals with similar molecule.
UniSil® Amide	H ₂ N O	3/5/10	120	~350	~0.50	5	2-8	Separation of stevioside and chemicals with similar molecule.

Separation of Highly Polar Molecules

UniSil® HILIC are especially suitable for separation of highly polar molecules that are typical challenges for conventional reversed phase chromatography. Many high polarity substances have too weak retentivity in reversed-phase chromatography to be separated ($k \approx 0$), but can be easily separated using hydrophilic interaction chromatography.


Comparison of UniSil® 5-120 C18 and UniSil® 5-120 HILIC-2M for separation of highly polar molecules

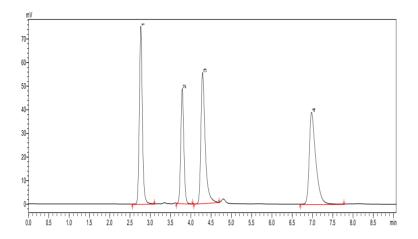
Column: 4.6×250 mm 5µm Mobile Phase: Acetonitrile/10mM ammonium acetate=10:90

Flow Rate: 1 mL/min
Temperature: 20°C
Detection: UV 254nm
Sample: 1: Uracil
2: Uridine

UV 254nm 1: Uracil 2: Uridine 3: Adenosine 4: Cytidine

Column: $4.6 \times 250 \text{ mm } 5 \mu\text{m}$

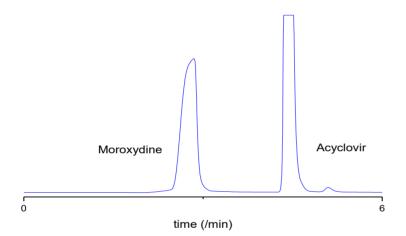
Mobile Phase: Acetonitrile/10mM Ammonium Acetate=90:10 Flow Rate: 1 ml/min


Temperature: 20°C
Detection: UV 254nm
Sample: 1: Uracil
2: Uridine
3: Adenosine

4: Cytidine

HILIC Silica Gels

The functional group of HILIC-2M is imidazole, which has multiple interaction with analyte such as ion exchange, weak hydrophobic and electrostatic interactions, so it can be used under pure water circumstance.


Application of UniSil® 5-120 HILIC-2M for using pure H₂O as mobile phase

Column: UniSil® 5-120 HILIC-2M 4.6×250mm Mobile Phase: H₂O Flow rate: 1mL/min Temperature: 40°C

Flow rate: 1mL/min
Temperature: 40°C
Detection: UV 254nm
Sample: 1. Cytosine
2. Thymine

3. 2-Aminopyrimidine4. 6-Chloroguanine

Column: UniSil® 5-120 HILIC-2M 4.6×250mm

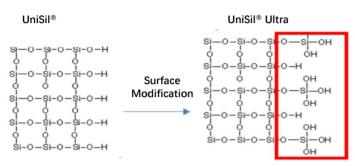
Mobile Phase: H₂O Flow Rate: 1mL/min Temperature: 40°C Detection: UV 254nm Sample: 1. Moroxydine 2. Acyclovir

Tips: UniSil® HILIC Hydrophilic chromatography is designed for wide pH range. All silica based medias will dissolve slowly in aqueous solution at pH>6. In order to increase column lifetime, it is recommended that the working temperature is below 40°C, the buffer concentration is below 20mM, and high pH buffers such as phosphate and carbonate are not used.

Ordering Information

Series	Cat. No.	Product Name	Diameter µm	Pore Size Å	Package Size
	19012-050012	UniSil® 5-120 HILIC-T	5	120	10g, 50g
	19011-050012	UniSil® 5-120 HILIC-2M	5	120	100g, 500g
UniSil [®] HILIC	19017-050012	UniSil® 5-120 Amide	5	120	1kg
OHISH FILIC	19012-100012	UniSil® 10-120 HILIC-T	10	120	100g, 500g
	19011-100012	UniSil® 10-120 HILIC-2M	10	120	1kg, 5kg
	19017-100012	UniSil® 10-120 Amide	10	120	10kg, 20kg

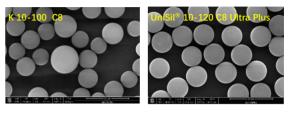
Note: Particle size and/or pore size can be customized upon request.


NanoMicro offers wide selection of reversed phase silica chromatography media based on monodisperse UniSil® matrices. Besides varied bonding phases, different surface modification of UniSil® matrices were employed to provide varied category of RPC silica media products. For example, UniSil® Ultra and UniSil® Ultra Plus are two categories of products for higher pH tolerance. While UniSil® matrices' work pH range is up to 8, UniSil® Ultra and UniSil® Ultra Plus products can extend their work pH range up to 10 and 12 respectively, significantly increasing the lifetime of their performance. The following table summarizes the offering of all NanoMicro's reversed phase silica products.

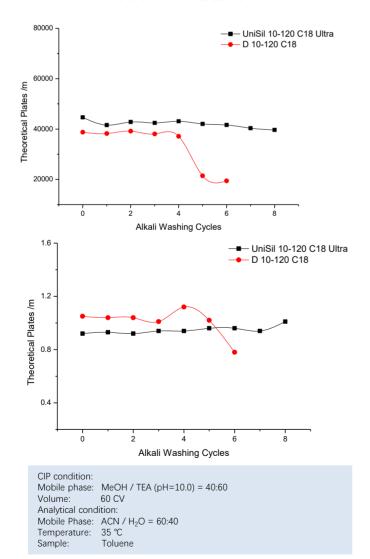
NanoMicro's Offering of Reversed Phase Silica Media

Product Name	Structure of Functional	Particle Size	Pore Size	Surface Area	Bulk Density	Carbon content	pH Range
Froduct Name	Group	(µm)	(Å)	m²/g	bulk Delisity	(%)	prinange
	/		100	~450	~0.60	17	
	>	8/10	120	~350	~0.55	16	
UniSil®C18	<u> </u>	6/10	200	~200	~0.50	12	2~8
	>		300	~100	~0.45	7	
	>	15/20/30/50	120	~350	~0.55	16	
UniSil [®] C18 Ultra	\	1.7/3/5/8/10	120	~310	~0.55	16	2~10
UniSil® C18 Ultra Plus	H₃C Si CH₃	3/5/10	120	~370	~0.55	17	2~12
UniSil [®] C18 AQ	1	3/5/10	120	~350	~0.55	15	2~8
UniSil [®] C18 Polar	O NH R	3/5/10	120	~350	~0.55	16	2~8
	,		100	~450	~0.55	11	
UniSil® C8	<	8/10	120	~350	~0.50	10	2~8
UniSil® C8	<		200	~200	~0.45	7	2~0
	>	15/20/30/50	120	~350	~0.50	10	
UniSil® C8 Ultra	Si_	1.7/3/5/8/10	120	~310	~0.50	10	2~10
UniSil® C8	CH ₃	5/8/10	120	~370	~ 0.50	10	2 12
Ultra Plus		5/8/10	200	~200	~0.45	7	2~12
				~350			
UniSil® C4	>	8/10	120	~100	~0.45	6	2~8
1	H ₃ C Si CH ₃		300	100	~0.40	3	
UniSil® C4 Ultra	1	1.7/3/5/8/10	120	~310	~0.45	6	2~10
UniSil [®] Ph	Q	10	120	~350	~0.50	12	2~8
UniSil® Ph Ultra	H ₃ C CH ₃	1.7/3/5/10	120	~310	~0.50	12	2~10
UniSil [®] PFP	F F F CH ₃	5/10	120	~310	~0.50	12	2~8
UniSil [®] PBB	Br Br Br H ₃ C CH ₃	5/10	120	-310	~0.50	8	2~8

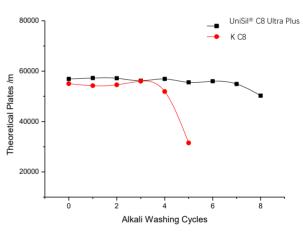
UniSil® Ultra Reversed Phase

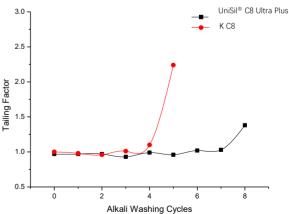

UniSil® Ultra is based on UniSil® silica matrix, but the surface is specially modified as shown in the figure below. Such modification renders improved reversed phase bonding that enhances the alkaline resistance (pH 2-10) and reduce peak tailing issue.

Surface Modification of UniSil® Ultra


UniSil® Ultra Plus Reversed Phase

UniSil® Ultra Plus is based on monodispersed silica gel that is surface-treated using proprietary chemistry before the reverse phase surface bonding. This special prebonding surface treatment provides UniSil® Ultra Plus reversed phase products extreme chemical stability, extending the work pH range (pH 2-12) and column lifetime.




Comparation of UniSil® 10-120 C8 Ultra Plus with Competitor K 10-100 C8

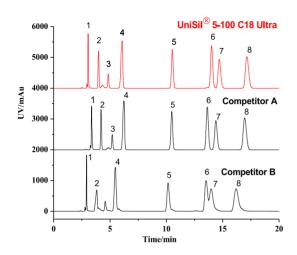
Comparison of UniSil® 10-120 C18 Ultra with D 10-120 C18 on alkaline resistance

Comparison of UniSil® C8 Ultra Plus with competitor K C8 on alkaline resistance

CIP condition:

Mobile phase: MeOH / NaOH (pH=13.0) = 40:60

Volume: 60 CV Analytical condition:

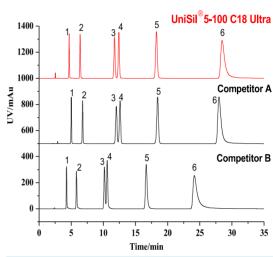

Mobile phase: $ACN / H_2O = 60:40$

Temperature: 35 °C Sample: Toluene

Benefits of UniSil® Reversed Phase Silica Gel:

- Large-scale production capacity (200kg/batch) and rigorous quality control system.
- High mechanical strength, high efficiency and high resolution
- A wide variety of bonded phases for applications from analytical to process scale.
- Good acid and alkali resistance
- In-house "State-of-the-Art" manufacturing from bead synthesis, bonding, to end capping enables good control of traceability and lot-to-lot consistency

Comparison of UniSil® C18 and top competitors in the market

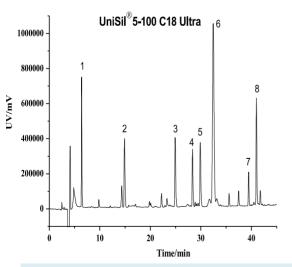


H₂O=10/90 Flow Rate: 1.0 mL/min Temperature: 40 C° Detection: UV 210 nm

Sample:

- 1, Malonic acid 2, Trans-aconitic acid
- 3, Citraconic acid 4, p-Aminobenzoic acid
- 5, Crotonic acid
- 6, α-Methacrylic acid
- 7, Mandelic Acid

- 8. Phthalic acid


Conditions

Mobile Phase NaAc-HAc- $H_2O(pH = 4.6)$ Flow Rate: 1.0 mL/min

Temperature: 25 C Detection: UV 254 nm

Sample:

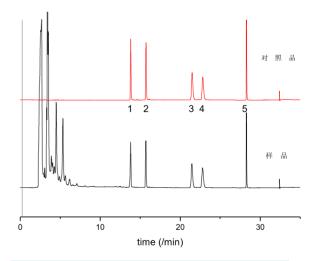
- 4, Adenine
- 5, Guanine
- 6, Thymine

Conditions Mobile Phase

0.1% TFA- ACN / 0.1 % TFA-H₂O Gradient elution: Flow Rate: 1.0 mL/min Temperature: 30 C° Detection: UV 214 nm

Sample:

- 1, Glycyl
- 2, Val-Tyr-Val
- 3, Met-enkephalin 4, Angiotensin II
- 5, Leuencephalin
- 6, Ribonuclease
- 7. Bovine insulin 8, Lysozyme


Conditions

Column: UniSil® 5-120 C18 Mobile Phase:

HCOOH-H₂O

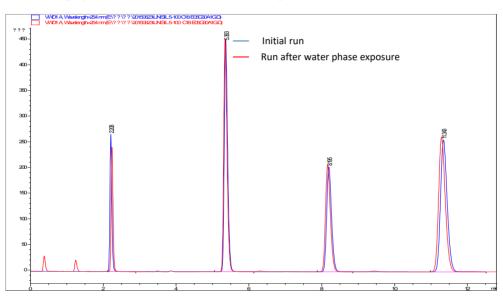
Temperature: 30 C Detection: UV 330nm

- 1, Cytosine 2. Uracil
- 3, Hypoxanthine

0.1% HCOOH- ACN / 0.1%

Flow Rate: 1.0 mL/min

Sample:


- 1, Amentoflavone
- 2, Bilobetin
- 3, Ginkgetin
- 4. Isoainkaetin
- 5, Sciadopitysin

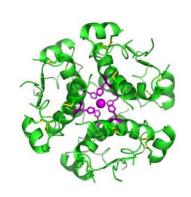
15 16

UniSil® C18 AQ

UniSil® C18 AQ are unique family members of Nanomicro's UniSil® product lines. These reversed phase chromatography media have both a high carbon loading of hydrophobic alkyl groups (C18) and a relatively hydrophilic surface. Such special surface chemistry is designed to allow the hydrophobic phase to remain "wetted" in highly aqueous mobile phases, thereby preventing "phase collapse". Thus they provide reproducible retention and excellent peak shape in highly aqueous eluents even 100% water. In addition, because the alkyl phase remains fully accessible in highly aqueous eluents, they provide stronger retention for polar compounds than conventional C18 stationary phase. Therefore, as compared with conventional C18, UniSil® C18 AQ products provide different selectivity and typically enhance separation of highly polar compounds such as peptides, proteins, and nucleotides.

Chromatographic runs of a UniSil® 5-120 C18 AQ column

Column: UniSiI® 5-120 C18 AQ 4.6*250mm Mobile phase: MeOH/H₂O = 70 / 30 Flow rate: 1.0 ml/min Column temperature: 30°C Detector: UV @ 254 nm

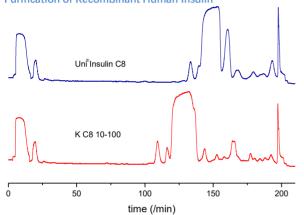

Sample: 1. Uracil 2. Acetophenone 3. Phenol 4. Methyl benzoate

Results: After the water exposure for 2 hours, analyte retention did not change, suggesting the aqueous phase compatibility of UniSil C18 AQ.

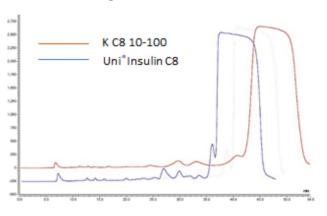
In a typical C18 stationary phase the hydrophobic surface is so difficult to infiltrate by highly aqueous eluents that hydrophobic alkyl chains collapse in highly aqueous mobile phase. Such "phase collapse" would render performance lose or unreproducible performance even after reviving with less aqueous eluents. To this end, we have designed a simple water exposure experiment to validate the aqueous phase compatibility of our UniSil® C18 AQ. Specifically, after a routine reversed phase HPLC run of a sample of model compounds using a UniSil 5-120 C18 AQ column, the column was rinsed with 100% water at 1.0 ml/min flow rate for 2 hours. After that, the eluent was converted to the original less aqueous mobile phase to repeat the HPLC run of the same sample. Retention time of model compounds before and after the water exposure are compared. As a result, reproduced retention was observed in our experiment, suggesting that our UniSil® C18 AQ product has good aqueous phase compatibility.

Uni® Insulin C8

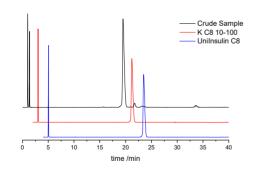
Uni[®] Insulin C8 is designed specially for separation and purification of insulins. It is made with monodispersed UniSil[®] Ultra Plus matrix as well as Nanomicro's proprietary end-capping and bonding technologies, enabling it with high mechanic strength, good resolution, high recovery and excellent alkalic resistance(pH 2-12).

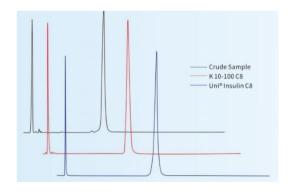

Purification of Recombinant Human Insulin

	K C8 10-100	Uni [®] Insulin C8		
Crude sample	8	6.7 %		
Sample Load	8	mg/g		
Purity	99.46 %	99.41 %		
Yield	62.1 %	73.6 %		


Purification of Degludec Insulin

	K C8 10-100	Uni®Insulin C8		
Crude sample	96.4 %			
Sample Load	12.5 mg/g			
Purity	99.01 %	99.07 %		
Yield	67.0 %	70.8 %		




Purification of Degludec Insulin

Analysis of Recombinant Human Insulin

Analysis of Degludec Insulin

Column: UniSil® 3-120 C4 4.6×100mm Mobile phase:

A: 50mM NaH₂PO₄ (H₃PO₄ pH=2.5) B: Solution A/ACN=50:50

Gradient elution
Detection: UV 220nm
Flow rate: 1mL/min
Sample size: 5µL

Column: UniSil® 3-120 C8 4.6×150mm Mobile phase: A: Na₂SO₄+ NaH₂PO₄ (pH=5.7) B: H₂O/ACN=50:50 Gradient elution Detection: UV 214nm

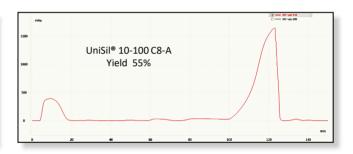
Flow rate: 1mL/min Sample size: 10µL

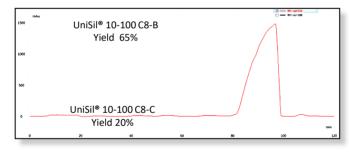
Customized Reversed Phase Silica Media

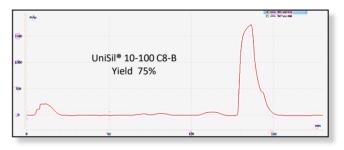
Besides routine product offering, NanoMicro also provides flexibility to develop customized reversed phase silica media to maximize purification performance accordingly for different customer requirements. For example, we have developed different customized C8 silica media for the purification of Oristat of two different customers, According to their specific purification requirements, two C8 products of different specification provided optimal results for the same drug of these two different customers respectively.

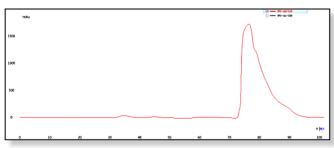
Purification of Orlistat for Customer A

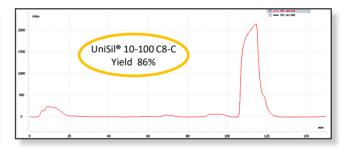
Requirements by Customer A


- Mobile phase must be Method/Water
- Content of isomer(RRT=0.96) ≤0.15%
- Increase yield against sample size remains at 13mg/g

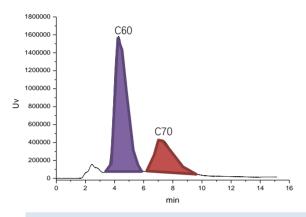

1000 UniSil® 10-100 C8-A Yield 83%


Preparation of Orlistat for Customer B


Requirements by Customer B

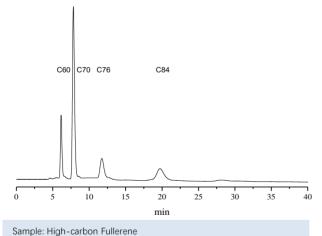

- Mobile phase must be Method/Water
- Single impurity ≤ 0.1%
- Total impurities ≤1.0%
- Increase yield against sample size remains at 13mg/g

Result UniSil® 10-100 C8-A has the best result.

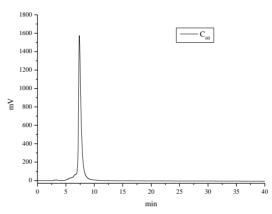

Result UniSil® 10-100 C8-C has the best result.

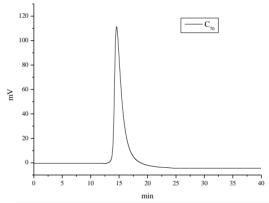
UniSil® PBM and PTZ for Fullerene

The separation of C60 and C70 from fullerenes mixture is very challenging because they have similar physical and chemical properties. Nanomicro has introduced two specialty reversed phase silica media, UniSil® PBM and UniSil® PTZ, for the separation of fullerenes.


C60 C70

Prurification of C60 and C70 with UniSil® PBM


Sample: Fullerene(dissolved in Xylene)
Column: UniSil® PBM 15×310mm
Mobile phase: Toluene
Detection: UV 310nm
Sample size: 3ml


Purification of C60 and C70 with UniSil® PTZ

Column: UniSil PTZ 4.6×250mm 10um Mobile phase: Toluene Detection: UV 310nm Sample size: 5uL

Analysis of C60 and C70

Sample: C60 and C70 Column: UniSil® PBM 4.6×250mm 10um Mobile phase: Toluene Detection: UV 310nm Sample size: 100μL

Features and Benefits of UniSil® PBM and UniSil® PTZ

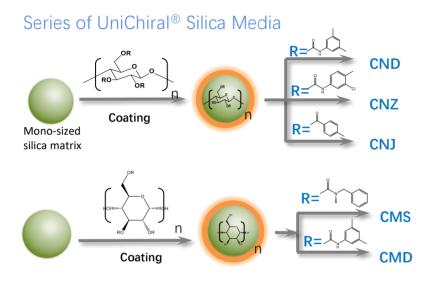
- Monodispersed uniformed spherical silica matrix(5μm, 10μm) and unique bonding technology resulting in good specific surface area and binding capacity.
- Excellent selectivity
- Stable in organic solvents such as toluene, xylene and chloro-benzene.
- Low back pressure

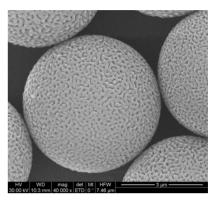
Ordering Information

	0.1	B 1	Diameter	Pore Size	B 1 0'
Series	Cat. No.	Product Name	μm	Å	Package Size
	19001-017012	UniSil® 1.7-120 C18	1.7	120	10g
	19001-030012	UniSil® 3-120 C18	3	120	50g 100g
	19001-050012	UniSil® 5-120 C18	5	120	500g
	19001-060012	UniSil® 5L-120 C18	5	120	1kg
	19001-080012	UniSil® 8-120 C18	8	120	
	19002-080012	UniSil® 8-120 C8	8	120	
	19001-100010	UniSil® 10-100 C18	10	100	
	19001-100012	UniSil® 10-120 C18	10	120	
UniSil [®]	19001-100020	UniSil® 10-200 C18	10	200	
Reversed Phase	19001-100030	UniSil® 10-300 C18	10	300	100g
	19006-100012	UniSil® 10-120 C18 AQ	10	120	500g 1kg
	19004-100012	UniSil® 10-120 C18 Polar	10	120	5kg 10kg
	19002-100012	UniSil® 10-120 C8	10	120	20kg
	19003-100012	UniSil® 10-120 C4	10	120	
	19001-150012	UniSil® 15-120 C18	15	120	
	19001-200012	UniSil® 20-120 C18	20	120	
	19001-300012	UniSil® 30-120 C18	30	120	
	19001-500012	UniSil® 50-120 C18	50	120	

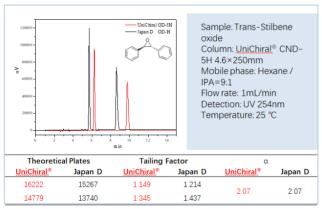
Note: Particle size and/or pore size can be customized upon request.

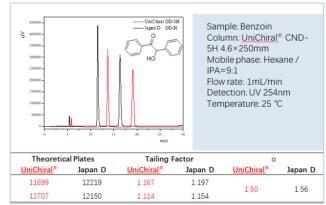
Ordering Information

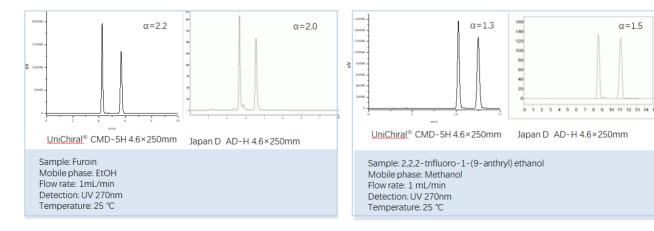

Series	Cat. No.	Product Name	Diameter µm	Pore Size	Package Size
	19101-080012	UniSil® 8-120 C18 Ultra	8	120	
	19102-080012	UniSil® 8-120 C8 Ultra	8	120	
	19100-100012	UniSil® 10-120 Ultra	10	120	
UniSil [®] Ultra	19101-100012	UniSil® 10-120 C18 Ultra	10	120	100g
Oitra	19102-100012	UniSil® 10-120 C8 Ultra	10	120	500g
	19103-100012	UniSil® 10-120 C4 Ultra	10	120	1kg
	19107-100012	UniSil® 10-120 Ph Ultra	10	120	5kg 10kg
	19201-080012	UniSil® 8-120 C18 Ultra Plus	8	120	20kg
UniSil [®]	19202-080012	UniSil® 8-120 C8 Ultra Plus	8	120	
Ultra Plus	19201-100012	UniSil® 10-120 C18 Ultra Plus	10	120	
	19202-100012	UniSil® 10-120 C8 Ultra Plus	10	120	
Uni [®] Insulin	14001-000010	Uni® InsulinC8 Type A	/	/	100g, 500g, 1kg
Uni insuiin	14001-000011	Uni® InsulinC8 Type B	/	/	5kg, 10kg, 20kg
	19020-050012	UniSil® 5-120 PBM	5	120	
UniSil [®]	19020-100012	UniSil® 10-120 PBM	10	120	100g, 500g
Fullerene	19021-050012	UniSil® 5-120 PTZ	5	120	1kg, 5kg
	19021-100012	UniSil® 10-120 PTZ	10	120	10kg, 20kg


Note: Particle size and/or pore size can be customized upon request.

Chiral Chromatography Media


UniChiral® is a family of polysaccharide chiral chromatography media based on NanoMicro's unique silica matrix with monodispersed particle size and large pore morphology. This product line includes CND, CNJ, CNZ, CMS, and CMD five series that employ Cellulose and Amylose respectively as surface coating for the derivatization of varied chiral selector phases. They provide a variety of complementary selectivity that allow you to screen for the most effective chiral separation and purification. While the 5 μ m and 10 μ m are routine catalogue offering, other particle sizes can be customized upon request. Besides UniChiral® bulk media, NanoMicro also offers their HPLC columns for analytical and semi-preparative purification applications. UniChiral® products are very affordable and highly competitive in quality and performance. They will make your chiral separation experience easy and productive.




SEM of 5µm UniChiral® silica matrix. Note its mono-sized feature and large pore morphology

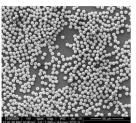
Chiral Separation Benchmarking of UniChiral® CND and Its Competitor

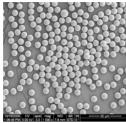
Chiral Separation Benchmarking of UniChiral® CMD and Its Competitor

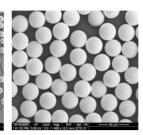
Chiral Chromatography Media

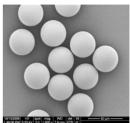
UniChiral® Highlights

- Highly competitive enantioselectivity and column efficiency
- Innovative silica technologies provides superior product lifetime and characteristic of low back pressure.
- In-house silica matrix production, polysaccharide coating, chiral phase functionalization, and column packing provide us complete control of our product quality and traceability
- Very affordable prices and highly competitive in quality and performance


Ordering Information

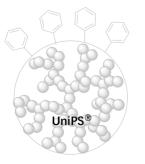

		Particle	Bulk Media	UniChiral [®] Colui	nn Size Options
Catalogue No.	Product Name	Size	Package Size Options	ID (mm)	Length (mm)
21210-005100	UniChiral CND-5H	5 µm	/		
21230-005100	UniChiral CNJ-5H	5 µm		21.2	250
21110-005100	UniChiral CND-5RH	5 µm		10.0	250 150
21130-005100	UniChiral CMS-5H	5 µm		4.6	
21120-005100	UniChiral CNZ-5H	5 µm			
21210-010100	UniChiral CMD-10H	10 µm	100g、500g、1Kg、 5Kg、10Kg、20Kg		250 150
21230-010100	UniChiral CMS-10H	10 µm		21.2	
21110-010100	UniChiral CND-10H	10 µm		5Kg、10Kg、20Kg 10.0	
21130-010100	UniChiral CNJ-10H	10 µm		4.6	. 30
21120-010100	UniChiral CMZ-10H	10 µm			


Please contact your sales representative for bulk media package sizes or column sizes that are not listed above



Reverse phase chromatography (RPC) resins are important alternatives to silica-based RPC media as they have different selectivity, high capacity and wide pH stability range. UniPS®, UniPMN, and UniPMM are the major components of NanoMicro Tech's polymeric RPC bulk media product lines. All of them are monodispersed, rigid divinylbenzene or methacrylic copolymer beads developed with proprietary precision microsphere technologies. They are designed for high resolution and high capacity RPC purification of a wide range of materials, from natural products, peptides, oligonucleotides to large proteins.

Representative SEM of UniPS RPC resins of varied particle sizes.

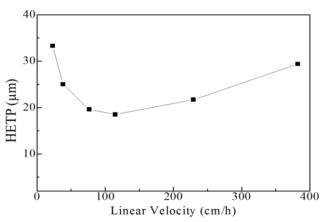

Characteristics of NanoMicro Polymeric RPC Bulk Media

	UniPS [*]	UniPSN	UniPMM	
Support Matrix	Poly(styrene/ divinylbenzene)	Poly(N-Vinyl Pyrrolidone /divinylbenzene)	Polymethacrylate	
Surface Polarity	Low	Medium	High	
Surface Functionality	None, native polymer matrix			
Bead Form	Monodisperse, spherical, rigid			
Particle Size (μm)	3, 5, 10, 15, 20, 30, 40	30, 60	40	
Chemical Stability	Can be used with all aqueous and organic solvents commonly used in reverse phase chromatography			
Working pH Range	1 to 14	2 to 13	2 to 12	
CIP pH Range	1 to 14	1 to 14	1 to 14	
Maximum Pressure Drop	< 10 MPa	< 4 MPa	< 1.6 MPa	
Operating Temperature	4 to 40 °C	4 to 40 °C	4 to 40 °C	
Delivery Conditions	20% ethanol suspension or dry powder			

Unique Selectivity

Conventional organic polymeric RPC matrices, such as poly(styrene-divinylbenzene), can provide different selection from that of silica-based RPC media, especially in the separation of biomolecules. NanoMicro has not only provided high performance poly(styrene-divinylbenzene) media (i.e. UniPS® products), but also

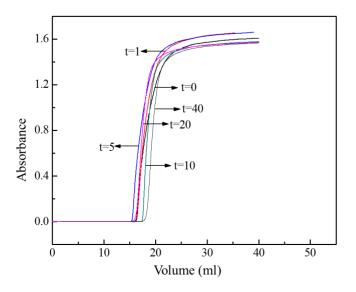
developed UniPSN and UniPMM that are a range of polymer matrices with increased polarity (see the carton below). Such higher polarity can differentiate their separation selection from that of conventional poly(styrene-divinylbenzene), and hence provides more choices of unique selectivity to address unprecedented impurity clearance.



Increase in Surface Polarity

High Column Efficiency and High Capacity

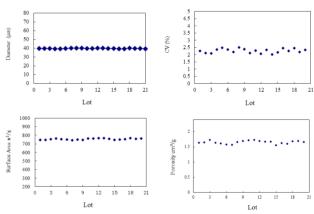
Due to the nature of their uniformed sizes and perfectly spherical shapes, UniPS®, UniPSN, and UniPMM reverse phase matrices generally render better column efficiency than their conventional polymeric RPC media analogous, and hence provide better RPC resolution. And because their pore size distribution is optimized, they also provide competitive high loading capacity.


Column HETP of UniPS®10-300 vs Linear Flow Rate

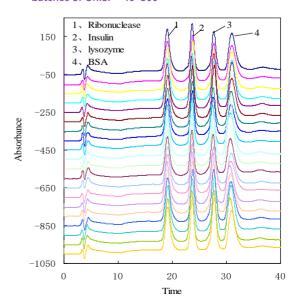
Excellent Chemical and pH Stability

UniPS®, UniPSN, and UniPMM RPC matrices all exhibit excellent chemical and pH stability. pH stability of UniPS® media are especially superior because they are based on poly(styrene-co-divinylbenzene) which is inherently unreactive and stable over the entire pH range of 1 to 14. Such chemical and pH stability provides the polymeric RPC matrices unmatched flexibility in the operating conditions and cleaning procedures, as well as excellent lifetime.

Insulin loading capacity breakthrough curves of UniPS® 10-300 after varied days of exposure to 1M NaOH at 60 $^{\circ}\text{C}.$


Lot-to-lot Consistency and Large-Scale Manufacturing

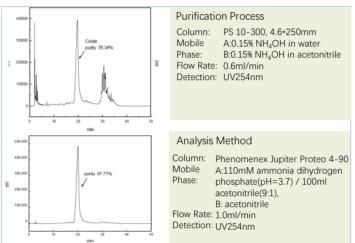
NanoMicro Tech's state-of-the-art manufacturing facilities and rigorous quality control enable the production of our RPC bulk media with excellent batch-to-batch consistency and scalability, meeting the demand of today's industrial bioprocessing for reproducibility and reliability of supply. Quality control examination of each batch of our RPC media products include characteristics measurement such as particle size, size distribution, pore size and surface area, as well as performance tests including model protein retention time, resolution, and loading capacity, etc.

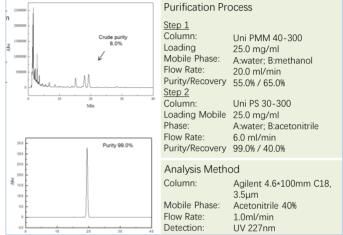


Bulk packed UniSP® RPC media for biopharmaceutical companies

Particle size analysis (top) and porosimetry measurement (bottom) of 20 continuous batches of UniSP® 30-300

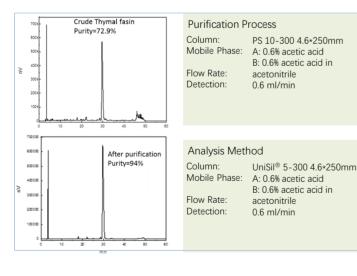
Model protein RPC separation test of 20 continuous batches of UniSP® 40-300

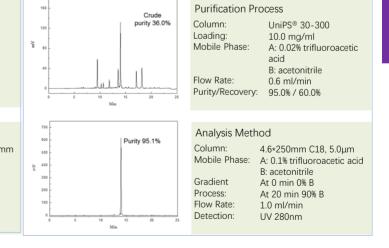

Applications


UniPS®, UniPSN, and UniPMM resins have been mainly applied in preparative RPC purification of peptides, oligonucleotides, proteins, and natural products, while UniPS® products of small particle sizes (especially the non-porous resins) have been used as analytical chromatography matrices. In addition, these high performance chromatography media have also seen applications

as reverse phase solid phase extraction (SPE) sorbents. Due to their superior pH stability and unique selectivity, these polymeric RPC products are especially suitable for RPC purification requiring high pH operation or selectivity alternative to that of silica-based RPC media.

Purification of Liraglutide through a RPC process using UniPS® 10-300.


Purification of Taxol through a two-step reverse phase chromatography process using UniPS® 30-300 and UniPMM 40-300 media



Application of UniPS® 10-300 for the RPC purification of a crude Thymalfasin containing a D-Asn28-Thymalfasin isomer impurity that is difficult to separate by conventional silica RPC.

Reverse phase chromatography purification of Vancomycin using $\textsc{UniPS}^{\textsc{\#}}$ 30-300 media.

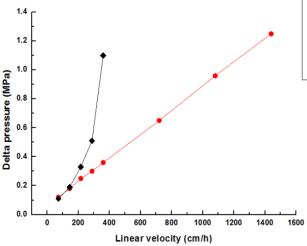
Ordering Information

Cat. No.	Draduct Nama	Diameter	Pore Size	Dookses Cine
Cat. No.	Cat. No. Product Name	μm	Å	Package Size
02000-003030	UniPS® 3-300	3	300	
02000-005010	UniPS® 5-100	5	100	
02000-005030	UniPS® 5-300	5	300	
02000-005050	UniPS® 5-500	5	500	
02000-005100	UniPS® 5-1000	5	1000	
02000-010010	UniPS® 10-100	10	100	
02000-010030	UniPS® 10-300	10	300	
02000-010050	UniPS® 10-500	10	500	
02000-010100	UniPS® 10-1000	10	1000	
02000-015010	UniPS® 15-100	15	100	
02000-015030	UniPS® 15-300	15	300	
02000-015050	UniPS® 15-500	15	500	
02000-015075	UniPS® 15-750	15	750	
02000-015100	UniPS® 15-1000	15	1000	
02000-020010	UniPS® 20-100	20	100	
02000-020030	UniPS® 20-300	20	300	30ml
02000-020050	UniPS® 20-500	20	500	100ml
02000-020100	UniPS® 20-1000	20	1000	500ml 1L
02000-025030	UniPS® 30-100	30	100	10L
02000-030030	UniPS® 30-300	30	300	100L
02000-030030	UniPS® 30-500	30	500	
02000-030050	UniPS® 30-800	30	800	
02000-030100	UniPS® 30-1000	30	1000	
02000-040010	UniPS® 40-100	40	100	
02000-040030	UniPS® 40-300	40	300	
02000-040050	UniPS® 40-500	40	500	
02000-040080	UniPS® 40-800	40	800	
02000-040100	UniPS® 40-1000	40	1000	
02000-050030	UniPS® 50-300	50	300	
02000-230030	UniPSA 30-300	30	300	
02000-440050	UniPMM 40-500	40	500	
02006-450030	UniPMM 50-Carb	50	/	
02000-330030	UniPSN 30-300	30	300	
02000-340030	UniPSN 40-300	40	300	
02000-360030	UniPSN 60-300	60	300	

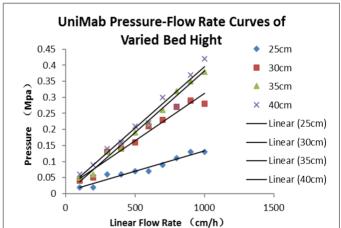
Note: Other particle size and/or pore size features can be customized upon request.

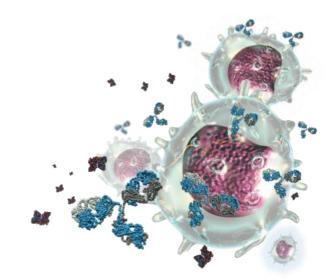
UniMab® Protein A Affinity Resin

To raise the purification efficiency of monoclonal antibodies (mAb) and recombinant Fc fragment proteins, Nanomicro has developed world-leading Protein A affinity resins, UniMab®. Based on rigid, mono-sized polymethacrylate matrices of excellent surface hydrophilization, the resin has minimal non-specific binding and high mechanical strength for fast flow operation. Its optimal surface bonding and leading genetic-engineered rProtein A ligand provide excellent Fc-binding selectivity, base stability, and low leachate. UniMab has proven its robust performance in many successful applications, including bioprocessing purification of mAb drugs in Phase III.


Characteristics of UniMab®

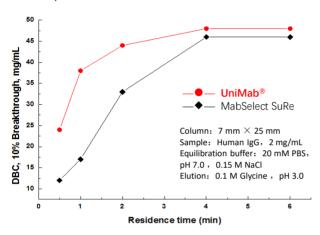
Features	UniMab [®]
Matrix	Mono-sized Polymethacrylate
Ligand	Engineered rProtein A
Particle size, µm	50
Loading, mg human IgG / ml packing (4 min residence time)	> 35
Maximum pressure, psi (bar, MPa)	116 (8, 0.8)
Maximum flow rate, cm/h	800
Protein A leachate	< 5 ng/ml
pH stable range	3-12
CIP cleaning	0.1-0.5 M NaOH
Temperature, C°	4~40
Storage	20% Ethanol, 2-8 C°


Highlights of UniMab®

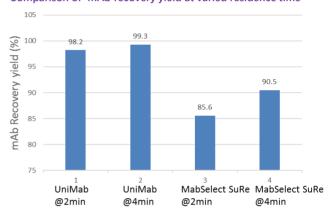

· High Mechanical Strength

Due to its rigid and mono-sized matrix, Uni®Mab has superior mechanic strength for high flow rate and low back pressure. This allows our customers to pack larger column bed height and/or operate at higher flow rate, improving process productivity.

Comparison of Uni® Mab and a conventional Agarose-type Protein A resin in pressure vs. flow rate characteristics

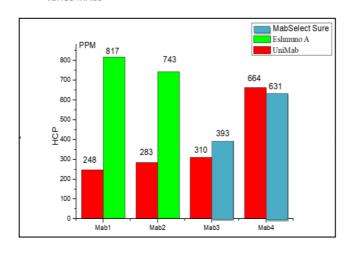


UniMab® Protein A Affinity Resin


High Dynamic Binding Capacity and High Recovery Yield at High Flow Rate

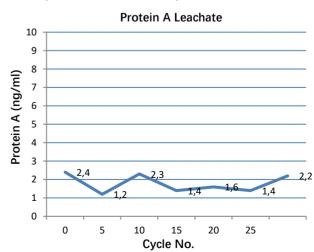
Because of its mono-sized nature and optimal pore size, UniMab® has high mass transfer and exhibits significantly better dynamic binding capacity (DBC) and recovery yield than that of the conventional Agarose-type protein A resin in short residence time.

Comparison of mAb DBC at varied residence time


Comparison of mAb recovery yield at varied residence time

Minimal Non-specific Binding and Low HCP

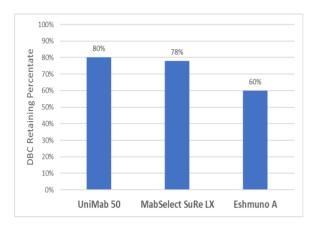
UniMab provides highly competitive mAb affinity specificity and renders very low HCP concentration during mAb purification.


Comparison of HCP Impurity concentration in the purification of varied mAbs

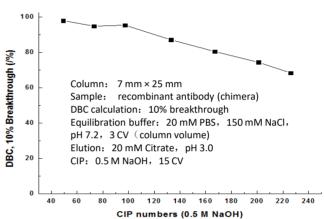
Very Low Protein A Leachate

Because of its optimal surface bonding as well as robust, engineered rProtein A ligand, UniMab exhibits very low level of protein A leachate in application.

UniMab demonstrates consistently low level (<5 ng/ml) of protein A leachate in varied cycle of use

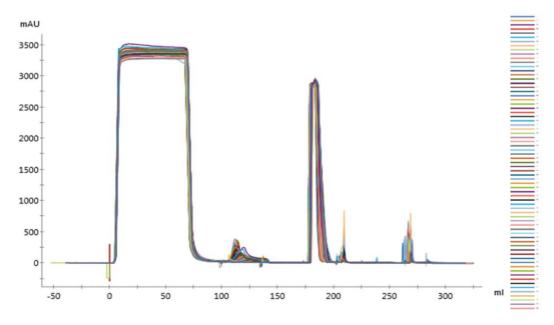


UniMab® Protein A Affinity Resin


Superior Alkaline Stability

UniMab's optimal surface bonding and leading engineered rProtein A ligand also provides excellent alkaline stability that enables the use of 0.1-0.5M NaOH as the CIP condition and extends its life cycles.

DBC Retaining Percentage of varied protein A resins after soaking in 0.5M NaOH for 24 Hours



Uni®Mab life cycle tests of mAb DBC stability under 0.5 M NaOH CIP treatment

High Reproducibility

UniMab's chromatogram overlay of 150 cycles of mAb purification

Immobilized Metal Ion Affinity Chromatography Resins

Immobilized metal ion affinity chromatography (IMAC) resins are commonly used to purify his-tagged proteins, but also untagged recombinant or native proteins. The affinity chemistry is based on the coordination bonding between protein surface amino groups (histidine, tryptophan, cysteine, etc.) and transition metal ions (Ni $^{+2}$, Co $^{+2}$, etc.) immobilized on the resins. NanoMicro's IMAC resins are made from rigid, 80 μ m mono-sized polymethacrylate matrices that carry two different types of chelating ligands, iminodiacetic acid (IDA) or nitrilotriacetic acid (NTA). NanoMicro offers Ni $^{+2}$ charged IMAC resin products, UniIDA-80Ni and UniNTA-80Ni, as well as uncharged IMAC resins, UniIDA-80L and UniNTA-80, which can chelate with varied metal ions such as Cu $^{2+}$, Ni $^{2+}$, Zn $^{2+}$ and Co $^{2+}$.

Uncharged IMAC Resins Ni*2 charged IMAC Resins

Characteristics s of NanoMicro's IMAC Resins

	UniIDA-80L	UniNTA-80L	UniIDA-80Ni	UniNTA-80Ni
Matrix	Mono-Sized Crosslinked Polymethacrylate Resin			
Chelating Ligand	IDA	NTA	IDA	NTA
Metal Ion Charged	Uncharged	Uncharged	Ni ⁺²	Ni ⁺²
Particle Size	~80 µm			
Metal Ion Capacity	~30 μm/mL (Ni ²⁺)	~50 μm/mL (Ni ²⁺)	~30 µm/mL (Ni ²⁺)	~50 μm/mL (Ni²+)
Dynamic Binding Capacity	NA	NA	> 20mg His-tagged protein	> 15mg His-tagged protein
pH Range	2-12	2-12	2-12	2-12
Maximum Pressure(MPa)	0.5	0.5	0.5	0.5

Highlights of Uni IMAC Resins

- Rigid, mono-sized matrix enables high flow rate operation
- Tolerant of NaOH and high concentration reducing agents, simplified sample pretreatment, much improved protein activity protection
- Competitive binding capacity
- Minimal ligand loss, stable in cleaning, long service life

Boronic Acid Affinity Chromatography Resin

NanoMicro has launched a new generation of boronic acid affinity packings in which boronic acid forms a coordination compound with cis-diol for separation and purification. Under alkaline conditions, boronic acid functional group interacts with the cis isomer of a 1,2-diol forming a stable five-membered cyclic adduct of cis-diol molecules and boronic acid on the stationary phase. Under acidic conditions, the adduct ring opens releasing the target molecules. Boronic acid affinity media are employed in the separation and purification of compounds containing cis-diol groups such as glycoproteins, nucleosides, nucleotides, sugars, etc.

Characteristics of UniPB

Product	UniPB-80L
Separation principle	Boronic acid affinity capture
Substrate	Poly(methyl methacrylate), or PMMA
Ligand	Phenyl boronic acid
Particle size, μm	80
Pore size, Å	1000
Purification stage	Capture, moderate purification
Characteristics	High flow rate, low back pressure, stable in cleaning
Maximum pressure, MPa	0.5
Recommended linear flow rate, cm/ h	150-750
pH stable range	2-12
CIP cleaning	0.1-0.5 M NaOH
Storage	20% ethanol, 2-8 C°

Highlights of UniPB-80L Boronic Acid Affinity Resin

- Monodisperse microspheres as packing substrate,
- Enabling high flow rate to raise productivity
- High ligand density providing very high loading capacity
- Very long service life reducing manufacturing cost

Heparin Affinity Chromatography Resin

Heparin is a linear and highly sulfated glycosaminoglycan which has anti-coagulant properties. Due to its polyanionic nature, heparin interacts with a wide range of biomolecules including plasma coagulation proteins, lipoprotein lipase, collagenase, and DNA polymerase. Immobilized heparin is widely used as an adsorbent in affinity chromatography for the purification of biological substances. NanoMicro has developed high performance heparin affinity resin UniHeparin-65L using monodisperse crosslinked polymethacrylate matrix with excellent surface hydrophilization. UniHeparin-65L has optimal pore size and ligand coupling chemistry that yield competitive binding capacity. In addition, this rigid resin with mono-sized nature provides superior mechanic strength for fast flow operation. Its overall robust performance has enabled UniHeparin-65L to be a good choice for bioprocessing heparin affinity chromatography as well as sample preparation sorbent. Besides UniHeparin-65L, NanoMicro also offers an agarose-based Heparin affinity resin product, NM90 Agarose Heparin,

$$R_{I} = SO_{3} \text{ or } COCH_{3}$$

$$H_{2}COSO_{3}$$

$$H_{2}COSO_{3}$$

$$H_{2}COSO_{3}$$

$$H_{2}COSO_{3}$$

$$H_{2}COSO_{3}$$

$$H_{2}COSO_{3}$$

$$H_{2}COSO_{3}$$

$$OOH$$

$$OO$$

Characteristics of NanoMicro's Heparin Affinity Resins

	UniGel-65Heparin	NM90 Agarose Heparin
Matrix	Monodisperse crosslinked polymethacrylate resin	Highly crosslinked agarose resin
Affinity Ligand	Heparin	Heparin
Particle Size	~65 μm	~90 μm
Ligand Density	~3 mg/ml	~5 mg/ml
pH Range	4-12	4-12
Maximum Pressure	0.8 MPa	0.3 MPa

Highlights of Heparin Affinity Resin UniHeparin-65L

- Rigid matrix enable to operate at fast flow for high productivity.
- Optimal ligand coupling provides highly competitive dynamic binding capacity
- Mono-sized matrix yields the robust performance in varied applications including not only bioprocessing purification but also SPE sample preparation.

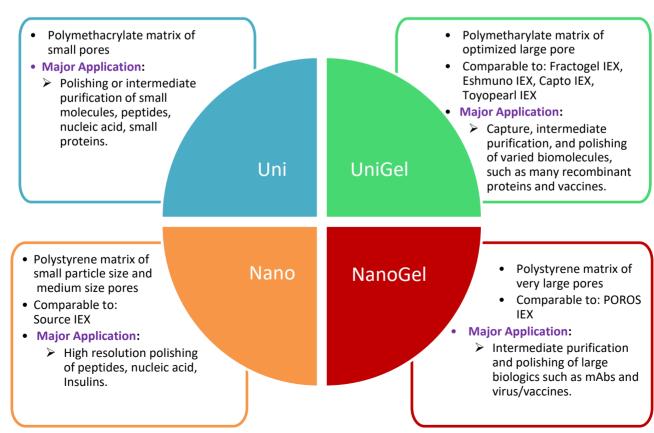
Affinity Chromatography Resins

Ordering Information

Carias	Cat No	Product Name	Diameter	Dookogo Cizo
Series	Cat. No.	Product Name	μm	Package Size
Protein A Affinity	17010-050100	UniMab 50	50	30ml, 100ml, 500ml 1L, 10L
	04085-080100	UniIDA-80L	80	
IMAC Affinity	04086-080100	UniNTA-80L	80	10ml, 30ml
IIVIAC AITIIIIty	04087-080100	UniIDA-80Ni	80	100ml, 1L
	04088-080100	UniNTA-80Ni	80	
Boronic Acid Affinity	04000-080001	UniPB-80L	80	30ml, 100ml, 1L
		UniGel-65Heparin	65	
Heparin Affinity		NM90 Agarose Heparin	90	30mL, 100mL, 1L

Note: customized affinity resin products can be developed upon request.

lon exchange (IEX) chromatography is a process that separates different biomolecules based on their surface charges (type, amount, and distribution). NanoMicro provides world leading monodisperse IEX resins of rigid polymer matrices. These mono-sized products have high separation resolution, excellent compatibility with active biomolecules, and superior pressure-flow characteristics, offering customers more productive IEX solution for laboratory purification and commercial production of bioactive compounds.


Ion Exchange Functional Groups

Туре	Functional group	Abbreviation	Features	рКа
Weak cation exchange	-CH ₂ COO	CM	Weakly acidic, mobile	4-6
Weak cation exchange	carboxylate	phase pH > 4		4-0
Strong cation exchange	-(CH ₂) ₃ SO ₃	SP	Strongly acidic, pH 1-14	< 2
Strong cation exchange	sulfonate	Jr.	Strongly acidic, pri 1-14	\ \ Z
Weak anion exchange	-(CH ₂) ₂ N(CH ₃) ₂	DEAE	Weakly alkaline, mobile	> 9
Weak aniion exchange	tertiary amino	DLAL	phase pH < 9	7 9
Strong anion exchange	-CH ₂ N ⁺ (CH ₃) ₃	0	Strongly alkaline,	> 12
Strong anion exchange	quaternary ammonium	Q	pH 1-14	- 12

- 1. Mobile phase pH should be between isoelectric point (pl) and pKa.
- 2. Mobile phase pH should be at least 1.0 pH unit from pl of analyte.
- 3. Select strongly cationic media when pH<3.0, strongly anionic media when pH>10.0

NanoMicro's IEX Product Series

NanoMicro offers four series of IEX resins of different matrix type and pore size to satisfy varied application. These products are complementary with each other to provide full spectrum IEX solution for all steps of bioprocessing chromatography (capture, intermediate purification, and polishing) of large variety of biologics, from small peptides to large proteins and viral particles,

Ion Exchange Chromatography Media

Uni Series IFX Resins

UniCM, UniSP, UniQ, UniDEAE, and UniMSP are the components of NanoMicro's Uni series of ion exchange (IEX) products. They are designed for the IEX purification of small proteins, peptides, oligo nucleotides, and small molecule drugs such as antibiotics. Their supports are highly crosslinked polymethacrylate beads of uniformed particle size. Through polyhydroxyl surface modification chemistry, these resins are enabled with excellent hydrophilicity and low non-specific adsorption property. Uni IEX resins have smaller pore size and hence better fit the IEX purification of small biomolecules. All these resins meet the demands of today's industrial bioprocessing for reproducibility, scalability, and reliability of supply.

Characteristics of Uni IEX Resins

Product Name	UniCM- 30S	UniCM- 50XS	UniSP- 30S	UniSP- 50XS	UniQ- 30S	UniQ- 50XS	UniDEAE - 30S	UniDEAE - 50XS	UniMSP- 30XS	UniMSP- 50XS
Support Matrix			Mon	odisperse	Highly C	rosslinke	d Polymethac	rylate Bead		
Particle Size (µm)	36	55	36	55	36	55	36	55	33	52
Pore Size (Å)	500	300	500	300	500	300	500	300	300	300
IEX Type	Weak	Cation	Strong	Cation	Strong	Anion	Weak Anion		Strong Cation /HIC Mixed Mode	
Charged Group	-CH ₂ (COO-	-(CH ₂) ₃ SO ₃ -	-CH ₂ N	+(CH ₃) ₃	-CH ₂ CH ₂ N	I(CH ₂ CH ₃) ₂	-(CH ₂) ₃ SO ₃ -	
Total Ionic Capacity (mmol/ml)	~0.23	~0.23	~0.23	~0.25	~0.23	~0.25	~0.20	~0.20	~0.25	~0.20
Dynamic Binding Capacity	~60 mg/ml (Lys)	~55 mg/ml (Lys)	~60 mg/ml (Lys)	~55 mg/ml (Lys)	/	/	/	/	~70 mg/ml (Lys)	~65 mg/ml (Lys)
Operating Pressure	< 0.8 MPa	< 0.5 MPa	< 0.8 MPa	< 0.5 MPa	< 0.8 MPa	< 0.5 MPa	< 0.8 MPa	< 0.5 MPa	< 0.8 MPa	< 0.5 MPa
pH Range	2 -	12	2 -	12	2 -	12	2 -	12	2-	12

^{*} DBC (10% breakthrough) of CEX resins is measured using 2mg/ml lysozyme in 20mM phosphate pH6.8 equilibration buffer. DBC of AEX resins is quantified using 2mg/ml of BSA in 20mM Tris pH8.0 equilibration buffer.

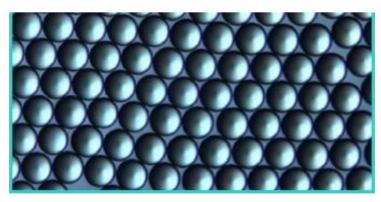
Highlights of Uni IEX Resins

- Uniformed Particle Size
- High Resolution
- Superior Mechanic Strength
- · Minimal Non-Specific Binding

Application of Uni IEX Resins

UniCM, UniSP, UniQ, UniDEAE, and UniMSP resins are mainly applied in the IEX chromatography purification of small biomolecules including peptides, oligonucleotides, and small proteins. They are suitable for polishing, intermediate purification or capture from lab to commercial-scale.

Ion Exchange Chromatography Media

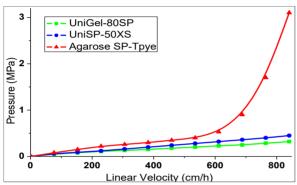

UniGel Series of IEX Resins

NanoMicro's UniGel series of IEX resins include weak cation (CM), strong cation (SP), weak anion (DEAE), and strong anion (Q) four types of products. Their supports are highly crosslinked polymethacrylate beads of uniformed particle size and open pore structure. Through polyhydroxyl surface modification and special surface extender chemistry, these UniGel ion exchange (IEX) resins are enabled with excellent hydrophilicity and minimal non-specific adsorption. Property. They are designed to meet the demands of downstream bioprocessing, from capture, intermediate purification to polishing, of biomolecules from small proteins to large biologics such as viral particles and vaccines. All these four types of UniGel IEX products have been widely applied by many biopharmaceutical cmpanies. Their reproducibility, scalability, and reliability have been well proved.

Characteristics of UniGel IEX Resins

Media Type	UniGel-CM	UniGel-SP	UniGel-DEAE	UniGel-Q					
Support Matrix	N	Monodisperse Highly Crosslinked Polymethacrylate Bead							
Particle Size(µm)	30,80	30,80	30,80	30,80					
Ion Exchange Type	Weak Cation	Strong Cation	Weak Anion	Strong Anion					
Charged Group	-CH₂COO ⁻	-(CH ₂) ₃ SO ₃ -	-(CH ₂) ₂ N(CH ₂ CH ₃) ₂	-CH ₂ N⁺(CH ₃) ₃					
Total Ionic Capacity	~0.28 mmol/ml	~0.11 mmol/ml	~0.09 mmol/ml	~0.09 mmol/ml					
Dynamic Binding Capacity	~100 mg/ml(hlgG)	~115 mg/ml(Lys)	~90 mg/ml (BSA)	~90 mg/ml(BSA)					
Operating Pressure	<1.0	MPa for 30μm particle size,	; <0.5 Mpa for 80μm particle	esize					
pH Range:									
CIP		1 to	o 14						
working		2 to	o 13						
Operating Temperature		4 to	30C°						
	pH stability range 2-13;	pH stability range 2-13; can be regenerated with acid or base; compatible with organic solvents; do not							
Chemical Stability		expose to stro	onger oxidizers.						

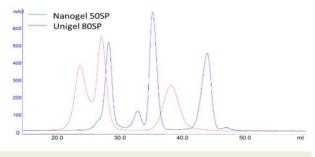
^{*} DBC (10% breakthrough) of CEX resins is measured using 2mg/ml lysozyme in 20mM phosphate pH6.8 equilibration buffer. DBC of AEX resins is quantified using 2mg/ml of BSA in 20mM Tris pH8.0 equilibration buffer.


Optical micrograph of 80 µm UniGel-80SP resin. Note its uniformed particle size

Highlights of UniGel IEX Resins

Superior Pressure-Flow Characterestics

High flow velocities allow increased productivity of large-scale bioprocessing operations and processing of larger volumes in shorter working shift. Lower cycle times also reduce exposure of the target protein to proteases. UniGel resins are based on mono-sized, highly crosslinked polymethacrylate resin, and hence enable very high flow rate operation at low backpressure.


Comparison of Pressure/flow curves of UniGel-80SP vs a topranked Agarose analogous and UniPS-50XS, a highly rigid PS-DVB resin (Test column: 4.6×200mm; mobile phase: water; temperature:25°C). System/tubing pressure is excluded.

Minimal Non-specific Binding and High **Elution Recovery**

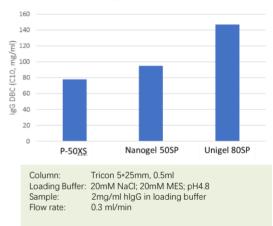
Due to its proprietary surface modification chemistry ensuring excellent hydrophilicity and biocompatibility, UniGel resins exhibit minimal non-specific binding and excellent protein elution recovery at mild elution conditions. UniGel-80SP are especially suitable for purification of biologics that may have poor recovery or poor stability in high salt concentration, while NanoMicro's NanoGel-50SP is a salt-tolerant CEX resin that is excellent for many mAb polishing purification (please refer Page xx for the information of NanoGel-50SP). Those two strong CEX resins are complementary with each other to provide solutions for varied CEX application needs.

Comparison of salt-gradient elution of model proteins: UniGel-80SP vs NanoGel-50SP

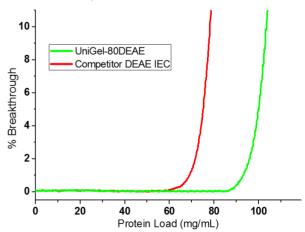
Column: 0.46cmD×20cmL

Flow rate

Sample Chymotrypsinogen A 5mg/ml Cytochrome C 8mg/ml


Lysozyme 4mg/ml 20mM MES/25mM NaCl, pH6.2 Buffer A:

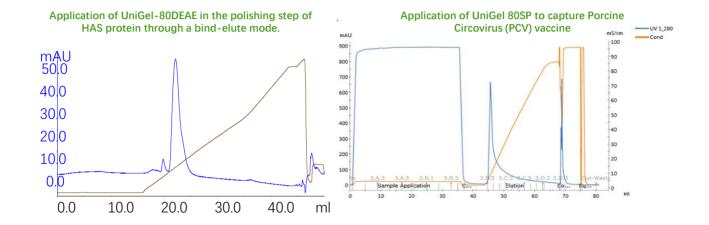
20mM MES/1.0M NaCl, pH6.2 Buffer B: Gradient: 0-100%B, 16CV 300 cm/h


Excellent Dynamic Binding Capacity

Due to their special surface extender chemistry and optimized pore structure, UniGel IEX resins exhibit superior dynamic binding capacity performance. examples, UniGel-80SP exhibits much higher IgG dynamic binding capacity than top ranked CEX analogous in the market. UniGel-80DEAE also shows significantly higher BSA dynamic binding capacity than a top ranked, agarose-based DEAE resin.

Comparison of IgG dynamic binding capacity of UniGel-80SP with a top-ranked CEX competitor P-50XS. and NanoGel 50SP that is another high performance CEX resin of NanoMicro Tech.

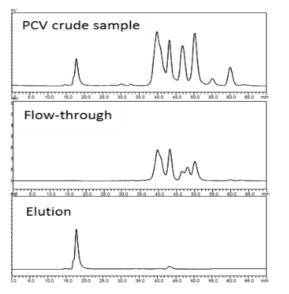
Comparison of BSA dynamic binding capacity breakthrough curves of UniGel-80DEAE vs a top-ranked DEAE resin competitor.


4.6 mm I.D*50mm Column: Sample

BSA (2mg/ml) in 25nM Tris HCI (pH 7.4) Mobile Phase: 25mM Tris HCI (pH 7.4)


Flow rate 0.5 ml/min (180 cm/h) AKTA Purifier (UV 280nm)

Applications of UniGel IEX Resins


UniGel-CM, UniGel-DEAE, UniGel-Q, and UniGel-SP resins are designed to meet the demands of downstream bioprocessing, from capture, intermediate purification to polishing, of biomolecules from small proteins to large biologics such as viral particles and vaccines. All these four types of ion exchange resins have seen applications in large scale bioprocessing purification of varied biologics. For examples, UniGel-80CM has been used in the production scale purification of bovine lactoferrin from milk as well as purification of recombinant HSA; All these application examples have demonstrated the high performance and well-proven reliability of our UniGel ion exchange resins.

Application of UniGel 80DEAE in a (Octoic acid precipitation + DEAE weak AEX) process to purify IVIG blood product.

Chromatogram of capture and then salt gradient elution to provide PCV of purity>90%.

SEC analysis chromatogram of PCV crude sample, the flow-through components during the capture step, and the purified PCV in the elution.

Nano Series IEX Resins

NanoSP and NanoQ are, respectively, strong cation (CEX) and strong anion exchange (AEX) chromatography resins made with NanoMicro's precision monodisperse microsphere technology. Their supports are rigid poly(styrene-divinylbenzene) (PS-DVB) beads of uniformed particle size and open pore structure. Through polyhydroxyl surface modification, these ion exchange resins are enabled with low non-specific binding property. They are intended for high resolution polishing or intermediate purification of small or medium size biomolecules.

Characteristics of NanoSP and NanoQ Resins

Media Type	NanoSP-15L	NanoSP-30L	NanoQ-15L	NanoQ-30L				
Support Matrix	Monodisperse PS-DVB Bead							
Particle Size(μm)	15	15 30 15						
Ion Exchange Type	Strong Cation	Strong Cation	Strong Anion	Strong Anion				
Charged Group	-(CH ₂) ₃ SO ₃	-(CH ₂) ₃ SO ₃	-CH ₂ N ⁺ (CH ₃) ₂	-CH ₂ N ⁺ (CH ₃) ₃				
Total Ionic Capacity (µmol/ml)	0.26	0.19	0.27	0.21				
Dynamic Binding Capacity (mg/ml)	80	60	55	45				
Operating Pressure (MPa)	≤ 6MPa	≤2 MPa	≤ 6MPa	≤ 2MPa				
pH Range:								
CIP		1 to	14					
working		2 to	13					
Operating Temperature		4 to	30°C					
	pH stability range	2-13; can be regenera	ited with acid or base	; compatible with				
Chemical Stability	orgai	nic solvents; do not ex	spose to stronger oxid	izers.				

^{*} DBC (10% breakthrough) of CEX resins is measured using 2mg/ml lysozyme in 20mM phosphate pH6.8 equilibration buffer. DBC of AEX resins is quantified using 2mg/ml of BSA in 20mM Tris pH8.0 equilibration buffer.

Highlights of NanoSP and NanoQ Resins

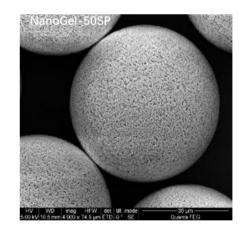
- Uniformed Particle Size
- Excellent Resolution
- Superior Mechanic Strength

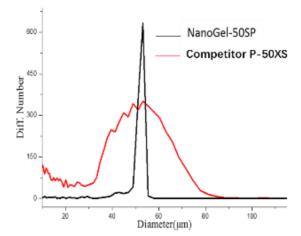
Application of NanoSP and NanoQ IEX Resins

NanoSP and NanoQ resins are mainly applied in the IEX chromatography purification of peptides, nucleotides, and proteins such insulins. They are highly comparable to GE's Source IEX resins that are well established ion-exchange resins for high resolution polishing or intermediate purification.

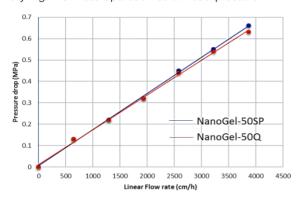
NanoGel - New Generation of Ion Exchange Chromatography Resins

NanoGel-50SP and NanoGel-50Q are, respectively, strong cation (CEX) and strong anion exchange (AEX) chromatography resins made with NanoMicro's precision monodisperse microsphere technology. Their supports are rigid poly(styrene-divinylbenzene) (PS-DVB) beads of uniformed particle size and large open pore structure. Through polyhydroxyl surface modification and special surface extender chemistry, these NanoGel ion exchange resins are enabled with low non-specific binding property. They are intended for large-scale bioprocess purification of large biomolecules (especially for mAbs).


Characteristics of NanoGel IEX Resins

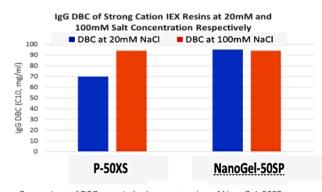

	NanoGel-50SP	NanoGel-50Q
Support Matrix	Monodisperse Poly(sty	rene-divinyIbenzene) Bead
Particle Size	50 μm	50 μm
Ion Exchange Type	Strong Cation	Strong Anion
Charged Group	-CH ₂ CH ₂ CH ₂ SO ₃ -	-N⁺(CH₃)₃
Total Ionic Capacity	~0.18 mmol/ml	~0.20 mmol/ml
Dynamic Binding Capacity	>100mg/ml (hlgG)	>100mg/ml (BSA)
Operating Pressure	< 20 bar (2 MPa)	< 20 bar (2 MPa)
pH Range	1 to 14	1 to 14
Operating Temperature	4 to 30 °C	4 to 30 °C

SEM images and Coulter particle size analysis (bottom right) of NanoGel-50SP and competitor P-50XS, a top-ranked CEX analogous in the market.



Highlights of NanoGel IEX Resins

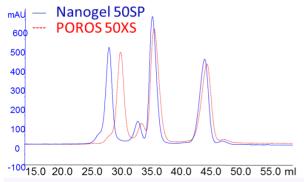
Excellent Pressure-Flow Characteristics


High flow velocities allow increased productivity of large-scale bioprocessing operations and processing of larger volumes in shorter working shift. Lower cycle times also reduce exposure of the target protein to proteases. NanoGel resins are based on highly rigid and monodisperse PS-DVB microspheres, and hence enable very high flow rate operation at low backpressure.

Pressure/flow curves of NannoGel-50SP and NanoGel-50Q (Test column: 7.7×100mm; mobile phase: water; temperature:25°C). System/tubing pressure is excluded.

High Dynamic Binding Capacity Over a Wide Range of Process Conditions

NanoGel ion-exchange resins provide high dynamic binding capacity (DBC) due to their optimized pores and surface functionalization chemistry. More importantly, they exhibit high DBC over a range of process conditions such as varied residence time and effluent conductivities. This allows target-molecule binding and impurity removal over a wide range of process conditions, thereby increasing process development flexibility and manufacturing throughput.



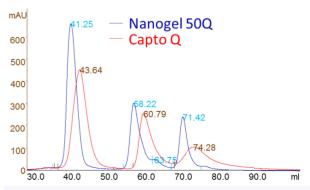
Comparison of DBC at varied salt concentration of NanoGel-50SP vs competitor P-50XS, a top-ranked CEX analogous. NanoGel-50SP exhibits high DBC at both low and high salt concentration.

Superior Resolution

Due to their monodisperse 50µm particle size as well as the high mass transfer associated with their large and open pore structure, both NanoGel-50SP and NanoGel-50Q provide superior resolution performance.

Model protein separation benchmarking of NanoGel-50SP

Column: 0.46cmDx 20cmL


Buffer A: 20mM MES/25mM NaCl, pH 6.2 Buffer B: 20mM MES/1.0M NaCl, pH 6.2

Gradient: 0 -100%B, 16 CV

Sample: Chymotrypsinogen A 5mg/mL; Cytochrome C 8mg/mL;

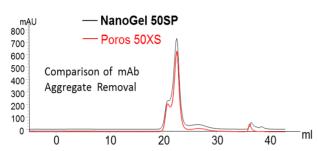
Lysozyme 4mg/ml. **Flow rate:** 300cm/h.

Model protein separation benchmarking of NanoGel-50Q.

Column: 0.46cmDx 20cmL Buffer A: 20mM Trisl, pH 8.0

Buffer B: 20mM Tris/1.0M NaCl, pH 8.0

Gradient: 0 –50%B, 20 CV


Sample: BSA 1mg/mL; Transferrin 1mg/mL; Amyloglycosidase

1mg/ml.

Flow rate: 300cm/h.

Applications

Due to their large and open pores, NanoGel 50Sp and NanoGel 50Q are especially suitable for the purification of many large biomolecules such as antibodies. The combination of high volume throughput and high capacity makes NanoGel resins the optimal choice for processing large amounts of protein in a fast and efficient way. In addition, their high resolution and high mass transfer properties provide superior performance for many unprecedented impurity clearance independent of scale and flow rate. NanoGel 50SP and NanoGel 50Q provide high performance in both bind-elute and flow-through modes.

	Samples	Purity(%)	Aggregate(%)	Yield(%)
Feed				
(mAb eluted from Protein A resin)	loading	98.36	1.64	/
	E-1	99.80	0.19	
	E-2	99.02	0.93	
NanoGel 50SP	E-3	97.89	2.11	87.86
	E-1	99.88	0.12	
	E-2	99.18	0.82	
Competitor P-50XS	E-3	97.52	2.40	81.41

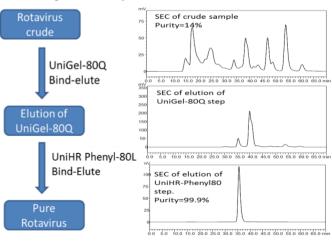
Comparison of NanoGel 50SP with POROS XS, a top ranked CEX analogous, in the performance of mAb aggregate removal using bind-elute mode. Left is the conductivity gradient elute chromatograms; Right table displays the analysis results of the elution collections.

Ordering Information

Carrian	Due doot News	Cat Na	Diameter	Pore Size	Dealessa Cina
Series	Product Name	Cat. No.	μm	Å	Package Size
	UniDEAE-30S	04023-030050	30	500	
	UniDEAE-50XS	04023-050030	50	300	
	UniQ-30S	04024-030050	30	500	
	UniQ-50XS	04024-050030	50	300	
	UniQ-50S	04024-05030	50	500	
Uni	UniSP-30S	04022-050030	30	500	
	UniSP-50XS	04022-050030	50	300	
	UniCM-30S	04021-030050	30	500	
	UniCM-50XS	04021-050030	50	300	
	UniMSP-30XS	04012-030030	30	300	
	UniMSP-50XS	04012-050030	50	300	30ml
	UniGel®-30Q	04084-030100	30	1000	100ml
	UniGel®-80Q	04084-080100	80	1000	1L
	UniGel®-30SP	04082-030100	30	1000	10L
LlaiCal	UniGel®-80SP	04082-080100	80	1000	100L
UniGel	UniGel®-30CM	04081-030100	30	1000	
	UniGel®-80CM	04081-080100	80	1000	
	UniGel®-30DEAE	04083-030100	30	1000	
	UniGel®-80DEAE	04083-080100	80	1000	
	NanoSP-15L	04042-015100	15	1000	
Nana	NanoSP-30L	04042-030100	30	1000	
Nano	NanoQ-15L	04044-015100	15	1000	
	NanoQ-30L	04044-030100	30	1000	
NanoGel	NanoGel-50SP	04062-050200	50	1500	
140110001	NanoGel-50Q	04064-050200	50	1500	

Hydrophobic Interaction Chromatography Resins

UniHR Butyl and UniHR Phenyl are the two major classes of NanoMicro's HIC resin products. Their supports are highly crosslinked polymethacrylate beads of uniformed particle size and open pore structure. Through proprietary surface hydrophilization and HIC ligand coupling chemistries, these resins are enabled with low non-specific adsorption property. UniHR Butyl and UniHR Phenyl HIC resins have been used by many biopharmaceutical customers for varied application.


Characteristics of UniHR Butyl and UniHR Phenyl HIC Resins

Product Name	UniHR Butyl-30S	UniHR Butyl-30L	UniHR Butyl-60S	UniHR Butyl-80L	UniHR Phenyl-30S	UniHR Phenyl-30L	UniHR Phenyl-60S	UniHR Phenyl-80L	
Support Matrix		Monodisperse Highly Crosslinked Polymethacrylate Beads							
HIC Ligand		Bu	ıtyl			Phe	enyl		
Particle Size (µm)	35	32	60	80	35	32	60	80	
Pore Size (Å)	500	1000	500	1000	500	1000	500	1000	
Dynamic Binding Capacity*	~20 mg/ml (Lys)	~15 mg/ml (Lys)	~20 mg/ml (Lys)	~10 mg/ml (Lys)	~30 mg/ml (Lys)	~15 mg/ml (Lys)	~20 mg/ml (Lys)	~10 mg/ml (Lys)	
Operating Pressure	< 0.8 MPa	< 0.8 MPa	< 0.5 MPa	< 0.5 MPa	< 0.8 MPa	< 0.8 MPa	< 0.5 MPa	< 0.5 MPa	
Operating pH Range	2 – 12				2 – 12				
Chemical Stability	Can be	regenerated	with acid or		ible with organ xidizers	nic solvents; de	o not expose to	stronger	

Product Highlights

- Uniformed Particle Size
- High Mass Transfer and High Resolution
- Outstanding Mechanic Strength and Superior Pressure-Flow characteristics
- Minimal Non-Specific Binding and High Recovery

Application Example: HIC Polish Purification of Rotavirus Using UniHR Phenyl-80L Resin

Ordering Information

Cat. No.	Product Name	Diameter μm	Pore Size Å	Package Size
06131-030050	UniHR Phenyl-30S	30	500	
06131-030100	UniHR Phenyl-30L	30	1000	
06131-060050	UniHR Phenyl-60S	60	500	30ml
06131-080100	UniHR Phenyl-80L	80	1000	100ml
06132-030050	UniHR Butyl-30S	30	500	1L 10L
06132-030100	UniHR Butyl-30L	30	1000	100L
06132-060050	UniHR Butyl-60S	60	500	
06132-080100	UniHR Butyl-80L	80	1000	

Solid Phase Extraction Sorbents

Monodisperse SPE Sorbents

Nanomicro's Solid Phase Extraction (SPE) sorbents are specialty monodisperse microspheres with very good chemical stability, broad pH use range, and optimized surface functional groups. Due to their precision mono-sized nature, NanoMicro's SPE sorbents exhibit better performance than traditional sorbents of non-uniform particle sizes in terms of consistency. In addition, they can provide compressed adsorption/elution and thus enable less solvent consumption.. They are popularly employed in the sample pretreatment for advanced liquid and gas chromatography or mass spectroscopy. They are widely used in the sample pretreatment and analysis of food, agriculture and livestock products, cosmetics, environmental samples, etc.

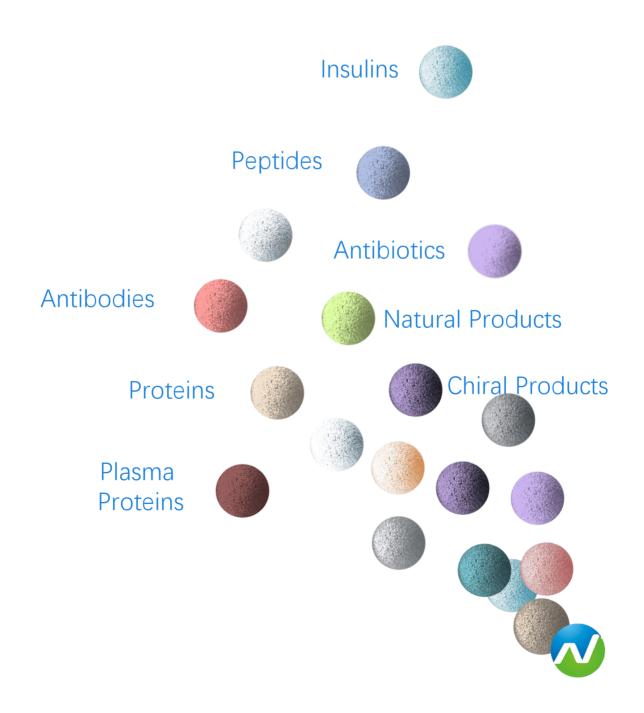
Features and Advantages

- Mono-sized nature, very good lot-to-lot reproducibility.
- Optimized pore size distribution and surface functional group density, very high sample recovery efficiency suitable for enrichment of trace target analyte
- Decreased solvent usage and compressed elution that reduce pollution stress on environment
- Multiple matrices and surface chemistries provide tailored hydrophobicity and surface function for optimal performance for varied application

Characteristics of Nanomicro's SPF Resins

Product	UniBPC	UniRPC	UniMC	NM BPC	UniSil C18	
Functional groups	SCX, SAX, WAX, WCX	SCX	SCX, SAX, WAX, WCX	SCX	C18	
Substrate	Monodisperse PolyTATO/St microspheres	Monodisperse PS/DVB microspheres	Monodisperse PMMA microspheres	PolyTATO/St microspheres	Silica microspheres	
Hydrophilicity	Hydrophilic, lipophilic	Hydrophobic	Hydrophilic	Hydrophilic, lipophilic	Hydrophobic reversed phase	
Particle size, μm	60, 40, 30	40, 30, 20, 10	30,20,10	60	30, 50	
Swelling coefficient	≤25% (60 µm) methanol	≤15% (30 µm) methanol	≤15% (40 µm) methanol	≤25% (60 µm) methanol	No swelling	
Pore size, Å	Pore size, Å 300 Å					

 $\begin{array}{lll} SCX = -(CH2)_3SO^3 & (strong\ cation\ exchange) \\ WCX = -CH_2COO - & (weak\ cation\ exchange) \\ SAX = -CH_2N(CH_3)_3 & (strong\ anion\ exchange) \\ WAX = -CH_2CH_2N(C_2H_3)_2 & (weak\ anion\ exchange) \end{array}$


Ordering Information

Series	Cat. No.	Product Name	Diameter	Package Size
Series	Cat. No.	Floudet Name	μm	rackage size
	02000-540030	UniBPC 40	40	
	02000-560030	UniBPC 60	60	
	02000-560031	NM BPC 60	50-150	
	02001-095030	NM 100-SCX	50-150	
	02001-130030	UniRPC 30-SCX	30	
	02001-530030	UniBPC 30-SCX	30	
	02001-560031	NM BPC 60-SCX	60	30ml
Uni [®]	02003-130030	UniRPC 30-SAX	30	100ml
SPE Sorbents	02003-530030	UniBPC 30-SAX	30	500ml
SPE SOLDELIES	02003-560030	UniBPC 60-SAX	60	1L
	02003-610030	UniMC 10-SAX	10	10L
	02003-620030	UniMC 20-SAX	20	
	02003-630030	UniMC 30-SAX	30	
	02004-620030	UniMC 20-WCX	20	
	02004-630030	UniMC 30-WCX	30	
	02005-130030	UniRPC 30-WAX	30	
	02005-560020	UniBPC 55-WAX	55	

Note: For more particle size and pore size, please contact with our sales.

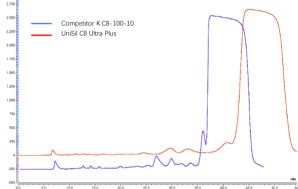
Application Guide

Monodisperse Chromatography Media

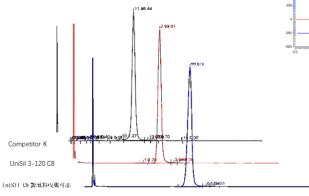
Insulin Purification

The different expression systems in insulin production generates "insulin-like" impurities that are very similar to insulin itself. Such impurities can be difficult to eliminate and require multiple orthogonal chromatography purification steps.

Typically in the capture step an ion exchange chromatography media which has large binding capacity, good alkalic resistance, long life, and fast flow rate is used to capture and concentrate the large volumes of fermentation product. NanoMicros UniGel-80SP is a highly crosslinked polymethacrylate beads of uniformed 80µm particle size and open pore structure are offering very high flow rate at low back pressure and efficient capture of insulin


A chromatographic media with high-resolution is required in intermediate purification step to remove large amounts of impurities. Both ion exchange chromatography media and reversed-phase media can be used in this step. Polystyrene matrices such as **NanoMicro's Nano SP 15μm or 30μm** media with advantages of high resolution and long column lifetime are widely used in this step

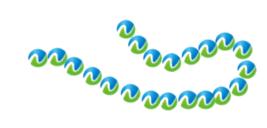
For the polishing step reversed-phase media based on silica such as **NanoMicro's Uni**[®] **Insulin C8** is the media of choice, because it has very high resolution and high column efficiency, which is very effective in removing" insulin-like" impurities


Purification of Degludec Insulin

	K C8 10-100	Uni®Insulin C8	
Crude sample	96	5.4 %	
Sample Load	12.5 mg/g		
Purity	99.01 %	99.07 %	
Yield	67.0 %	70.8 %	

Purification of Degludec Insulin

Analysis of Degludec Insulin



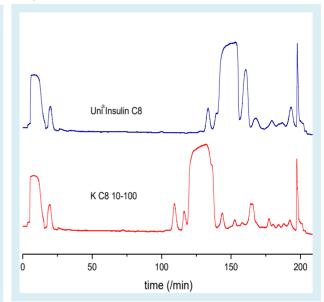
Column: UniSil® 3-120 C8 4.6×150mm

Mobile phase:

A: Na₂SO₄+ NaH₂PO₄ (pH=5.7) B: H₂O/ACN=50:50

Gradient elution
Detection: UV 214nm
Flow rate: 1mL/min
Sample size: 10µL

Insulin Purification


Purification of Recombinant Human Insulin

	K C8 10-100	Uni®Insulin C8
Crude sample	86	6.7 %
Sample Load	8 r	mg/g
Purity	99.46 %	99.41 %
Yield	62.1 %	73.6 %

Analysis of Recombinant Human Insulin

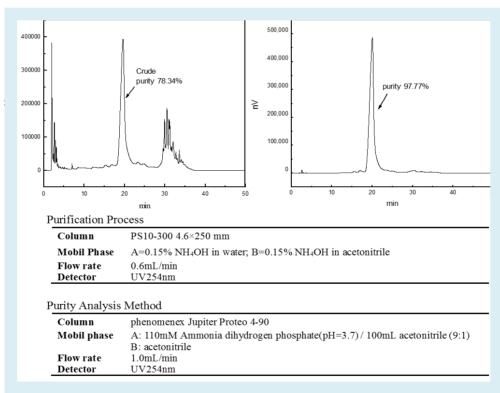
— Crude Sample — K C8 10-100 — Unilnsulin C8 Time /min Column: UniSil® 3-120 C4 4.6×100mm Mobile phase: Gradient elution A: 50mM NaH₂PO₄ (H₃PO₄ pH=2.5) B: Solution A/ACN=50:50 Detection: UV 220nm Flow rate: 1mL/min Sample size: 5µL

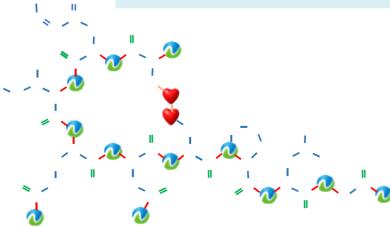
Preparation of Recombinant Human Insulin

Summary of Application References on Insulin Purification *

	2 10 11 21	Competitive Advantages of	Application Results Summary			
Molecules	Purification Step	Nanomicro's Products	Binding Capacity	Crude	Purity	Recovery
	Capture	High flow rate, low non-specific binding, high binding capacity	20mg/ml	45.0%	78.0%	75.0%
Inculin Clargina	Intermediate Purification	High rigidity, long life, high alkalic &	24mg/ml	68.0%	98.0%	80.0%
Insulin Glargine	intermediate Pullication	acidic tolerance, high resolution	10mg/ml	65.0%	95.0%	75.0%
	Polishing	High resolution, high rigidity, high column efficiency	6mg/ml	95.0%	99.5%	78.0%
	Capture	High flow rate, Low non-specific binding, high binding capacity	100mg/ml	60.0%	95.0%	94.0%
		urification High rigidity, long life, high alkalic & acidic tolerance, high resolution	24mg/ml	68 <u>.</u> 0%	98.0%	80.0%
Insulin Detemir Insulin Degludec	Intermediate Purification		15mg/ml	80.0%	96.0%	85.0%
			15mg/ml	60.0%	95.0%	80.0%
	Polishing	High resolution, high rigidity, high column efficiency	15mg/ml	95.0%	99.0%	80.0%
Recombinant Human Insulin	Polishing	High Recovery	8mg/ml	86.7%	99.4%	73.6%

^{*} For reference only. Results obtained based on specific sample and separation strategies. Please consult our Application Specialist for more information or assistance

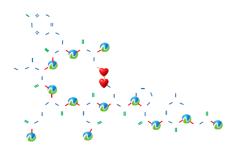

Peptide Purification


Generally, peptides and many small biomolecules are separated and analyzed by reversed-phase silica chromatography media, which is rigid and does not swell in organic solvents. NanoMicro offers a full line of monodisperse silica chromatography media, including reversed-phase, normal phase, HILIC, and chiral media. NanoMicro monodisperse silica medias are perfectly spherical with a very narrow particle size distribution, and hence provide advantages such as high resolution, more stable column bed and high column efficiency as compared to polydisperse silica media.

However, in some cases, reversed-phase silica media may not perform well because of selectivity limitations or some process conditions may exceed the pH-tolerant range of silica. To overcome these, **NanoMicro** develops and manufactures polystyrene/divinyl benzene based reversed-phase **UniPS** media that has superb chemical stability feature enabling it to be used over the full pH range. At the same time, it complements the selectivity of silica media and can be used in cases where silica media is not suitable.

Besides RPC media, NanoMicro's high resolution IEX resins, NanoSP and NanoQ as well as Uni series IEX resins are good choices for the polishing or intermediate purification of many peptides.

Purification of Liraglutide

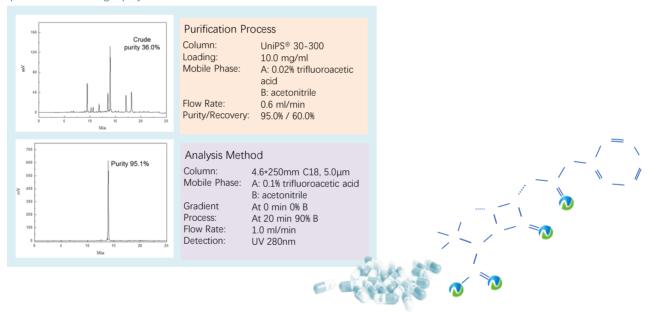


Peptide Purification

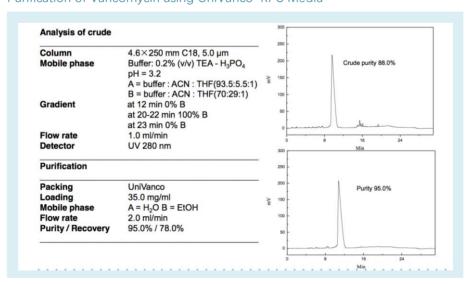
Summary of Application References on Peptide Purification *

		Competitive Advantages of		Application		
Molecules	Purification Step	Nanomicro's Products	Binding Capacity	Crude	Purity	Recovery
Terlipressin	Po l ishing	High Resolution, High Rigidity, Long Lifetime	6mg/ml	98.0%	99.0%	50.0%
Leuprorelin	Po l ishing	High Resolution, High Rigidity, Long Lifetime	6mg/ml	86.0%	98.0%	80.0%
	Intermediate Purification		12.5mg/ml	39.0%	85.0%	85.0%
Thymalfasin	Intermediate Purification	High Resolution, High Rigidity, Long	12.5mg/ml	39.0%	85.0%	80.0%
rnymanasin	Polishing	Lifetime	8mg/ml	85.0%	98.0%	89.0%
	Polishing		12.5mg/ml	39.0%	85.0%	82.0%
Palmitoyl Tetrapeptide-7	Polishing	High Resolution, High Rigidity, Long Lifetime	10mg/ml	71.0%	98.0%	87.0%
Acetyl Tetrapeptide	Po l ishing	High Resolution, High Rigidity, Long Lifetime	6mg/ml	86.0%	98.0%	92.0%
Fuenetide	Intermediate Purification	High Resolution, High Rigidity, Long	8mg/ml	55.0%	81.0%	90.0%
Exenatide	Po l ishing	Lifetime	4mg/ml	81.0%	98.0%	89.0%
Thymopentin	Polishing	High Resolution, High Rigidity, Long Lifetime	15mg/ml	85.0%	99.0%	72.0%
Oxytocin	Po l ishing	High Resolution, High Rigidity, Long Lifetime	100Unit/ml	62.3%	97.8%	81.8%
Tacrolimus	Po l ishing	High Resolution, High Rigidity, Long Lifetime	2mg/ml	82.0%	99.0%	80.0%
Bivalirudin	Po l ishing	High Resolution, High Rigidity, Long Lifetime	5mg/ml	94.0%	99.5%	70.0%
Octreotide	Po l ishing	High Resolution, High Rigidity, Long Lifetime	10mg/ml	68.0%	99.0%	70.0%
lino allustists	Intermediate Purification	High resolution, high rigidity, high	5g/ l	88.0%	95.0%	70.0%
Liraglutide	Polishing	column efficiency, good alkalic and acidic tolerance	2.5g/l	95.0%	99.0%	60.0%

^{*} For reference only. Results obtained based on specific sample type and separation strategies. Please consult our Application Specialist for more information or assistance

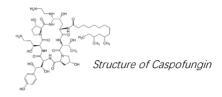

Antibiotic & Antifungal Purification

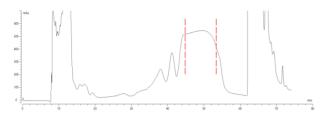
The commercial production of penicillin and other antibiotics is the most dramatic example of industrial microbiology. Production of antibiotics is very critical to meet the market demands of human patients worldwide. Profitable production and commercialization of antibiotics is a challenge today, affected mainly by the low market price and commercial profitability coupled with the high cost of development and unsustainable production cost. Lowering manufacturing cost while maintaining or improving production efficiency is very important. Conventional microporous resins of is commonly used in the separation and purification processes but the separation efficiency is not cost effective enough.


NanoMicro has developed a series of polystyrene and polyacrylate based chromatography media, which are proven to be very cost effective in purification of commercially produced antibiotics such as Vancomycin and Daptomycin. In one commercial production, 4000L of traditional microporous resin was replaced by 1000 liters of NanoMicro monodisperse media successfully improving product quality with significant manufacturing cost reduction from a more efficient purification process with higher product recovery and buffer consumption saving .

Vancomycin

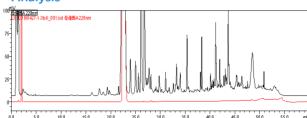
Purification of Vancomycin using UniPS® 30-300 Reverse phase chromatography media.


Purification of Vancomycin using UniVanco RPC Media


Antibiotic & Antifungal Purification

Caspofungin

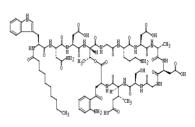
Caspofungin is the first echinocandin drug that was approved by the US FDA in 2001. It was developed by Merck, for the patients with invasive aspergillosis cannot be cured or tolerated by standard therapies.

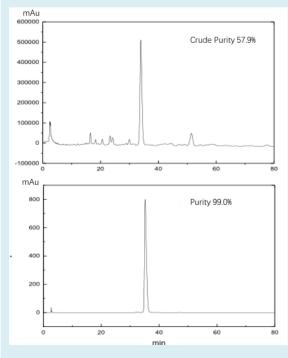

Separation of Caspofungin

Preparational Condition:

Media: UniSil® 8-120 C18

Analysis


Analytical Condition:


Column: UniSil® 3-120 C18 Ultra, 4.6×150 mm

 $\begin{array}{ll} \text{Detection:} & \text{UV 220 nm} \\ \text{Flow Rate:} & \text{1.0 mL/min} \\ \text{Sample size:} & \text{10 } \mu\text{L} \end{array}$

Daptomycin

Daptomycin is a cyclic lipopeptide antibiotic first marketed by Cubist Pharmaceuticals. It has a unique structure and distinct mechanism of action against Gram-positive aerobic and anaerobic bacteria. As the only antibiotic without resistance, Daptomycin is highly effective and fast-acting toward Gram-positive organism including resistant pathogens, such as Methicillin-resistant Staphylococcus aureus, Vancomycin-resistant Enterococcus faecalis, and Staphylococcus aureus. Its potent bactericidal activity is clinically very important in the treatment of infection that causes serious and life-threatening diseases. cannot be cured or tolerated by standard therapies.

Purification

Step 1

packing: UniQ-50X

Loading: 10.0 mg/ml

Mobile phase: A = Buffer , B = Buffer + 0.5 M NaCl

Purity/Recovery: 85%/ 90.0%

Step 2

Column packing: UniQ-50XS

Loading: 10.0 mg/ml

Mobile phase: A = Buffer, B = Buffer + 0.5 M NaCl

Purity/Recovery: 90% / 87%

Step 3

Column packing: UniSil 10-100 C18

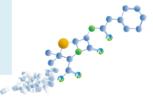
Loading: 10.0 mg/ml

Mobile phase: A = Buffer. B = Ethanol

Purity/Possyony 000/ / 469/

Purity/Recovery: 99% / 46%

Analysis


Column: 4.6 × 250 mm C8, 5.0 μm

Mobile phase: A. CH₃CN/Buffer = 2/8, B. CH₃CN/Buffer = 5/5

 Isocratic elution:
 A / B= 55 / 45

 Flow rate:
 1.0 ml/min

 Detector:
 UV @ 225 nm

Antibiotic & Antifungal Purification

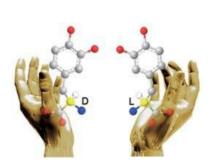
Summary of Application References on Antibiotics Purification*

5 : .	D 15 11 01	Competitive Advantages	Application Results Summary			
Project	Purification Step	of Nanomicro's Products	Binding Capacity	Crude	Purity	Recovery
7-ACA	Polishing	High Resolution, high rigidity, high column efficiency, long life	20mg/ml	96.3%	99.3%	93.0%
Ascomycin	Polishing	High Resolution, High Rigidity, High column efficiency	11g/kg	93.1%	99.5%	90.0%
Caspofungin	Polishing	High Resolution, high rigidity, high lolumn efficiency	20mg/ml	83.0%	99.0%	83.0%
Caspofungin Intermediate-II	Intermediate Purification	High Resolution, high rigidity, high column efficiency, long life	16.3mg/ml	65.0%	95.0%	97.0%
Cyclosporin Analogu	Intermediate Purification	High Resolution, high rigidity, high column efficiency, long life, high binding capacity	15mg/ml	56.0%	96.0%	85.0%
Cyclosporine	Polishing	High flow rate, High Resolution, Long life	50mg/ml	92.0%	99.0%	80.0%
Dalbavancin	Polishing	High Resolution, high rigidity, high column efficiency, long life, high binding capacity	15mg/ml	58.0%	99.0%	78.0%
	Intermediate Purification	High Resolution, high rigidity, high column efficiency, long life, high binding capacity	10mg/ml	50.0%	60.0%	90.0%
Daptomycin	Intermediate Purification		10mg/ml	60.0%	85.0%	75.0%
	Polishing	High Resolution, high rigidity, high lolumn efficiency	10mg/ml	85.0%	99.0%	60.0%
Fidaxomicin	Polishing	High Resolution, High Rigidity,	12mg/ml	97.0%	99.0%	97.0%
riduxonnem	Polishing	Polishing High column efficiency	1 mg/ml	65.0%	99.1%	80.0%
Micafungin	Polishing	High flow rate, low non-specific binding, high binding capacity	5g/I	90.0%	98.0%	75.0%
Micafungin Intermediate	Polishing	High rigidity, long life, good alkalic and acidic tolerance, high	5g/l	94.0%	99.6%	79.0%
Moxidectin	Intermediate Purification	High Resolution, high rigidity,	20mg/ml	85.0%	89.0%	90.0%
Moduecum	Polishing	high lolumn efficiency	30mg/ml	89.0%	99.3%	95.0%
Oritavancin Intermediate	Polishing	High Resolution, high rigidity, high column efficiency, long life	8mg/ml	80.4%	98.2%	40.0%
PneumocandinB ₀	Polishing	High Resolution, high rigidity, high lolumn efficiency	1 mg/ml	65.6%	99.1%	80.0%
Rapamycin	Polishing	High Resolution, high rigidity, high column efficiency, long life, high binding capacity	4mg/ml	95.7%	98.5%	70.0%
Tacrolimus	Intermediate Purification	High rigidity, long life, wide pH range, high Resolution	30mg/ml	60.0%	82.0%	80.0%
Teicoplanin	Intermediate Purification	High rigidity, long life, wide pH range, high Resolution	30mg/ml	76.0%	94.0%	75.0%
Tiacumicins	Polishing	High Resolution, high rigidity, high lolumn efficiency	3mg/ml	80.0%	99.4%	65.0%
	Intermediate Purification	High Resolution, high rigidity, high column efficiency, long life	30mg/ml	76.0%	94.0%	72.0%
Vancomycin	Polishing	High Resolution, high rigidity, high column efficiency, long life, high binding capacity	30mg/ml	78.0%	95.0%	80.0%

^{*} For reference only. Results obtained based on specific sample and separation strategies. Please consult our Application Specialist for more information or assistance

Natural Product Purification

Nanomicro offers a series of chromatographic media products, both silica and polymeric reverse phase resins, for efficient separation and purification of natural products. In addition, our dedicated application team have also developed many successful separation and purification process for customers. One of these examples is the process developed for the purification of Breviscapine.


Summary of Application References about Natural Product Purification*

		Competitive Advantages	Application Results Summary			
Project	Purification Step	of Nanomicro's Products	Binding Capacity	Crude	Purity	Recovery
	Intermediate Purification	High Resolution, high rigidity, high column	25mg/ml	8.0%	55.0%	65.0%
Taxol	Polishing	efficiency, long lifetime	25mg/ml	55.0%	99.0%	40.0%
Docetaxel	Polishing	High Resolution, high rigidity, high column efficiency, long lifetime	10mg/ml	80.4%	99.0%	38.3%
T	Capture	High Resolution, high rigidity, high column efficiency, long lifetime	40mg/ml	30.8%	76.0%	95.0%
Huperzine A	Polishing	High Resolution, High Rigidity, Long Lifetime	40mg/ml	76.0%	99.0%	70.0%
Scutellarin	Polishing	High Resolution, high rigidity, high column efficiency, long lifetime	10mg/ml	90.0%	99.0%	70.0%
Stevioside	Polishing	High Resolution, high rigidity, high column efficiency, long lifetime	50mg/ml	43.0%	98.0%	70.0%
a	Intermediate Purification		10mg/ml	90.0%	95.0%	70.0%
Ginkgolides	Polishing	High Resolution, High Rigidity, Long Lifetime	20mg/ml	95.0%	99.7%	78.3%
Neomangiferin	Polishing	High Resolution, high rigidity, high column efficiency, long life	2.5mg/ml	51.8%	98.6%	62.5%
Myricetin	Polishing	High Resolution, high rigidity, high column efficiency, long life	3mg/ml	94.0%	99.8%	80.6%
Diosgenin	Polishing	High Resolution, high rigidity, high column efficiency, long life	10mg/ml	28.0%	80.0%	60.0%
Vinorelbine	Polishing	High Resolution, high rigidity, high column efficiency, long life	10mg/ml	73.0%	99.0%	55.0%
Cod Liver Oil	Polishing	High Resolution, High Rigidity, Long Life	1 mg/ml	EPA: 57.4% DHA:24.4%	EPA: 98.0% DHA:86.9%	EPA: 25.0% DHA:30.0%
Breviscapine Scutellarin	Polishing	Use Water as the solvent	7mg/ml	97.2%	99.3%	75.0%
	Intermediate Purification	High Resolution, High Rigidity, Long Life	8mg/ml	91.7%	98.3%	80.0%
Salvianolic acid A	Polishing	High binding capacity	10mg/ml	98.3%	99.7%	88.0%
Capture			4.2g/kg	Rg1: 2.12% Re: 4.3% Rg2: 2.7% Rb: 13.1% Rc: 14.6% Rb2: 9.2% Rd:32.5%	Rg1: 71.6% Re: 56.3% Rg2: 11.0% Rb: 71.3% Rc: 29.7% Rb2: 75.4% Rd: 97.4%	/
Ginsenoside	Intermediate Purification	High Resolution, High Rigidity, High column efficiency	Rg1: 4.2g/kg Re: 4.2g/kg Rg2:1.1g/kg Rb1: 4.2g/kg Rb2: 4.2g/kg	Rg1: 71.6% Re: 56.3% Rg2: 11.0% Rb1: 71.3% Rb2: 75.4%	Rg1: 87.6% Re: 83.7% Rg2: 55.0% Rb1: 83.1% Rb2: 88.6%	/
	Polishing		Rg1: 4.2g/kg Re: 4.2g/kg Rg2: 3.5g/kg Rb1: 3.5g/kg Rc: 4.2g/kg Rb2: 4.2g/kg Rd: 4.2g/kg	Rg1:crude 87.6% Re: crude 83.7% Rg2:55.0% Rb1:crude	Rg1: 99.1% Re: 93.7% Rg2: 91.6% Rb1: 95.3% Rc: 93.7% Rb2: 90.7% Rd: 97.4%	/

* For reference only. Results obtained based on specific sample and separation strategies. Please consult our Application Specialist for more information or assistance

Chiral Separation

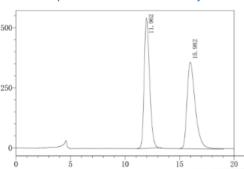
Chiral isomers have almost the same chemical and physical properties, it is extremely difficult in separation and purification. Usually, chiral isomers can be separated by chiral chromatography medias which are very expensive and monopolized by Daicel Chiral Technologies. innovative silica matrix and optimal surface chemistries. NanoMicro has developed a series of chiral chromatography medias of highly competitive performance for chiral analysis and separation. In addition, NanoMicro also offers service of customized process development for chiral purification. With a dedicated application team, a well-equipped GMP lab, and an established work-flow, NanoMicro has successfully provided numerous customers high quality service of chiral separation.

Chiral compound's racemate of AB

Chiral preparation spectra of 20 injections

2000 1500 1000 500

Column: UniChiral® CND-5H 50mm ø×250mm L

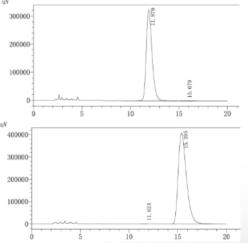

Loading quantities: 100mg/injection

Flowrate: 80.0mL/min Column pressure: 2Mpa UV wavelength: 280nm Temperature:30°C

Ee: peak1, ee. > =99.0%; peak2,ee. > =99.0%

Yield: >90%

Chiral compound's racemate of AB analysis charts



Column: UniChiral® CND-5H 4.6mm×250mm L

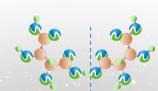
Eluent: n-Hexane/Ethanol=90/10(v/v)

Temperature: 30°C Flowrate: 1.0mL/min UV wavelength: 254nm

Purification fraction analysis charts

Discovering Life's Origins and the Mystery of Homochirality

The molecules necessary to form life here on earth are chiral molecules that exist predominantly in either the left-handed state or the right-handed state. No one knows why the building blocks of life tend to prefer one state over the other. Life's preference for the left-handed chiral molecules has puzzled biologist for a long time. The discovery of the complex chiral molecule propylene oxide (CH₃CHOCH₂) within a gaseous cloud outside our solar system has the potential to shed some light on Earth's homochiral mystery From this, we can begin to deduce why life chooses one particular molecular orientation over the other and what makes that particular chiral state-either left-handed or rightanded—beneficial to the formation of life

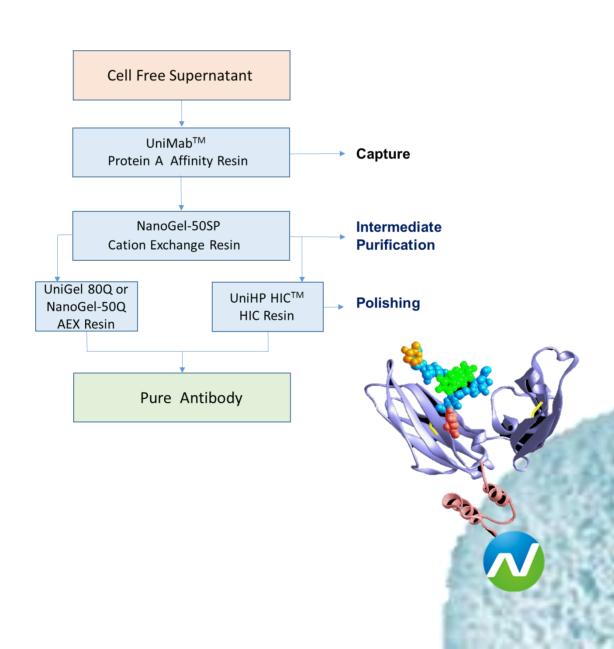


Chiral Separation

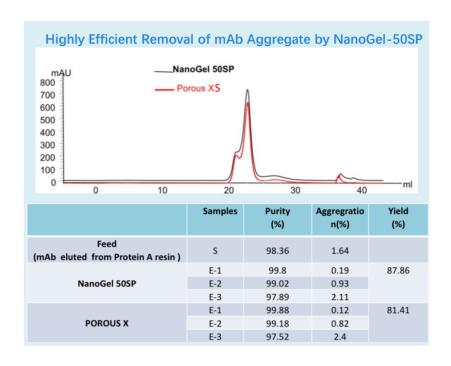
Summary of Application References about Chiral Separation

Project	Purification Step	Nanomicro's Resin and Media	Separation Mode	Corresponding Products in the Market	Competitive Advantages of Nanomicro's Products
2,2,2-trifluoro-1- (9-anthryl) ethanol	Analysis	UniChiral [®] CND- 5H	Chiral resolution	OD-5H (Daicel)	High resolution, selectivity comparable to Daicel.
Benzoin	Analysis	UniChiral [®] CND- 5H	Chiral resolution	OD-5H (Daicel)	High resolution, selectivity comparable to Daicel.
Bovasitan	Polishing	UniSil [®] 10-120	Normal Phase	Daisogel 120-10-P	High Resolution, high rigidity, high column efficiency, long life
Disopyramide	Analysis	UniChiral [®] CMD- 5H	Chiral resolution	AD-5H (Daicel)	High resolution, selectivity comparable to Daicel.
Flurbiprofen	Analysis	UniChiral [®] CMD- 5H	Chiral resolution	AD-5H (Daicel)	High resolution, selectivity comparable to Daicel.
Furoin	Analysis	UniChiral [®] CMD- 5H	Chiral resolution	AD-5H (Daicel)	High resolution, selectivity comparable to Daicel.
Ketoprofen	Analysis	UniChiral [®] CMD- 5H	Chiral resolution	AD-5H (Daicel)	High resolution, selectivity comparable to Daicel.
Pantolactone	Analysis	UniChiral [®] CMD- 5H	Chiral resolution	AD-5H (Daicel)	High resolution, selectivity comparable to Daicel.
Thalidomide	Analysis	UniChiral [®] CMD- 5H	Chiral resolution	AD-5H (Daicel)	High resolution, selectivity comparable to Daicel.
Warfarin	Analysis	UniChiral [®] CMD- 5H	Chiral resolution	AD-5H (Daicel)	High resolution, selectivity comparable to Daicel.

^{*} For reference only. Results obtained based on specific sample and separation strategies. Please consult our Application Specialist for more information or assistance



Antibody Purification


Monoclonal antibodies are so expensive because of the cost and complexity of manufacture and the need for relatively high doses. Although raw material costs are low the process itself is extremely expensive. Downstream processing covers more than 50% of the total cost, therefore reducing the cost of downstream processing is the key to achieve the target of making this biodrugs affordable for the masses.

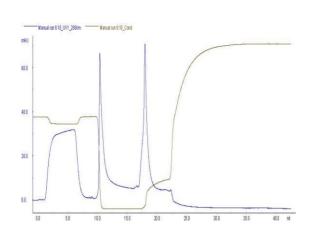
Downstream processing of monoclonal antibodies or Fc-fusion proteins involves a platform process that hinges on the successful use of Protein A chromatography as a highly selective capture step. Cation exchange or hydrophobic interaction chromatography media is used in intermediate purification steps and typically anionic exchange chromatography is used in the final polishing step. NanoMicro provides competitive chromatography resin products for all these steps.

NanoMicro's protein A resin **UniMab** is based on **monodisperse** polymer matrix. It is rigid, with good alkaline tolerance and high dynamic binding capacity at a short residence times of 1-2 minutes ranging from 35-45mg/ml, improving production efficiency and making it particularly suitable for continuous processing. In addition, mono-sized UniMab resin has high mass transfer and can significantly reduce equilibration and elution buffer, thus lowering manufacturing cost further. NanoMicro has also developed **NanoGel-50SP**, a monodisperse cationic exchanger comparable to the well established POROS XS media from Thermofisher for effective removal of aggregates. For the AEX polishing step of mAbs, both **UniGel-80Q** and **NanoGel-50Q** are highly competitive choices.

Antibody Purification

Summary of Application References about antibodies, Fc-fusion Proteins, and ADC

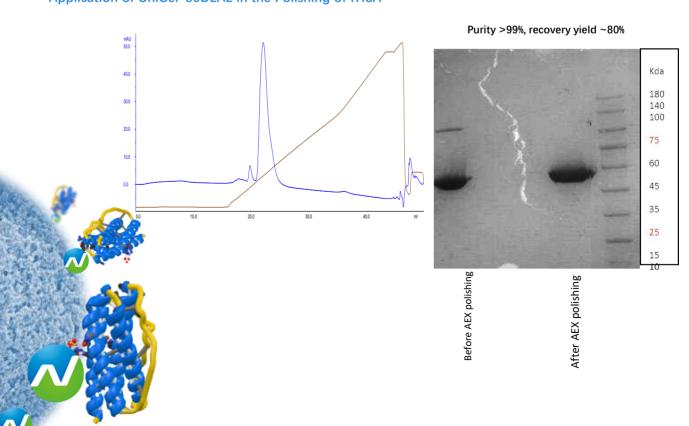
		Separation	Competitive Advantages	Application Results Summary		
Project	Purification Step	Mode	of Nanomicro's Products	Binding Capacity	Purity	Recovery
	Capture	Affinity (Protein A)	High binding capacity at short retetion time(30mg/ml at 2min RT); Enable higher column height(>25cm); High alkaline tolerance(0.5M NaOH CIP); Less buffer consumption	45mg/ml (UniMab) 55mg/ml (UniMab Pro)	98.0%	90.0%
	Intermediate Purification	Strong Cation Exchange	Excellent salt tolerance(100mM NaCl); High efficiency in removing aggregates; High resolution; High mass transfer;	100mg/ml	99 <u>.</u> 0%	90,0%
MAb	Intermediate Purification	Strong Cation Exchange	High column efficiency; High binding capacity; High recovery yield	120mg/ml	99.0%	90.0%
	Intermediate Purification	Mixed mode (hydrophobic and weak cation exchange)	High salt tolerance(300mM NaCl); Specical selectivity ; High resolution	30-50mg/ml	99.0%	85.0%
	Polishing	Strong Anion Exchange	High recovery; High flow rate; High binding capacity	100-200mg/ml	99.0%	90.0%
	Polishing	Mixed mode (hydrophobic and weak cation exchange)	High resolution; High flow rate	30-50mg/ml	90.0%	91.0%
	Capture	Affinity	High binding capacity at short retetion time(30mg/ml at 2min RT); Enable higher column height(>25cm); High alkaline tolerance(0.5M NaOH CIP); Less buffer consumption	45mg/ml (UniMab) 55mg/ml (UniMab Pro)	98.0%	90.0%
Fc-Fusion Proteins	Intermediate Purification	Hydrophobic	High Resolution; High efficiency in removing aggregates; High efficiency in removing degraded fragments	20mg/ml	99.0%	90.0%
	Polishing	Strong Anion Exchange	High flow rate	150mg/ml	99:0%	90.0%
Antibody-drug Conjugate (ADC)	Polishing	Hydrophobic	High resolution; High selectivity of ADC from different DAR.	30-50mg/ml	99.0%	85.0%
Antibody Fragment Fab	Polishing	Strong Cation Exchange	High resolution; Removing degraded fragments	30mg/ml	99.0%	85.0%
Bispecific antibodies (bsAbs)	Intermediate Purification	Mixed model (hydrophobic and weak cation exchange)	High Resolution; Efficient removal of aggregates and mismatch antibodies	30-50mg/ml	95,0%	80,0%


^{*} For reference only. Results obtained based on specific sample and separation strategies. Please consult our Application Specialist for more information or assistance

Recombinant Protein Purification

Nanomicro offers competitive IEX resins, HIC resins, and IMAC resins for efficient separation and purification of many recombinant proteins. One of these successful examples is the application in the purification of recombinant human serum albumin (rHSA) proteins. NanoMicro's UniGel-SP CEX has been successfully applied in the capture step of commercialized rHSA production due to its high binding capacity and excellent pressure-flow characteristics. NanoMicro's UniHR Phenyl HIC resin has seen its application in the intermediate purification step of rHSA, while UniGel-80DEAE and UniPB boronic acid affinity resin are successfully used in the polishing of rHSA.

Application of UniHR Phenyl HIC Resin in the Intermediate Purification of rHSA

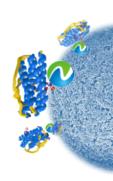


Before HIC

After HIC

Purity ~95%, recovery yield ~80%

Application of UniGel-80DEAE in the Polishing of rHSA



Recombinant Protein Purification

Summary of Application References about Recombinant Proteins

		Competitive Advantages	Ар	plication Resu Summary	lts
Project	Purification Step	of Nanomicro's Products	Binding Capacity	Purity	Recovery
Interleukin-11	Capture	High flow rate; Low back pressure; High binding capacity; High resolution	30-50mg/ml	50.0%	90.0%
Protease from Soybean	Capture	Low non-specific binding; Efficient impurity removal	30-50mg/ml	85.0%	82.0%
Recombinant Human Growth Hormone (rhGH)	Capture	High binding capacity; superior selectivity	30mg/ml	95.0%	85.0%
Urokinase	Capture	High resolution; High selectivity (efficient in removing small moleculars)	20mg/ml	99.0%	75.0%
	Capture	High flow rate; Low non-specific binding ; High binding capacity	40mg/ml	60.0%	90.0%
	Intermediate Purification	High flow rate and efficient impurity removal	25mg/ml	80.0%	95.0%
Recombinant Human Albumin	Intermediate Purification		40mg/ml	99.0%	80.0%
(rHSA)	Intermediate Purification	High resolution; Efficient aggregate removal	40mg/ml	99.0%	81.0%
	Polishing	Special selectivity: cis-diol structure can form stable five-membered cyclic complex, binding at high pH value and eluting at low pH value.	20mg/ml	99.0%	85.0%
Membrane Protein	Polishing	High rigidity; Efficient removal of protein	30mg/ml	95.0%	90.0%
(His-tag)	Polishing	impurities	30mg/ml	95.0%	91.0%
Low Molecular Heparin	Capture	High flow rate; High resolution; High selectivity (efficient removal of chondroitin sulfate)	10mg/ml	95.0%	86.0%
PEG Recombinant Human Growth Hormone (PEG-rhGH)	Intermediate Purification	High flow rate; Low back pressure; High binding capacity; High resolution	2.5mg/ml	95.0%	86.0%

^{*} For reference only. Results obtained based on specific sample and separation strategies. Please consult our Application Specialist for more information or assistance



Virus & Vaccine Purification

Summary of Application References about Vaccine Purification

Project	Durification Cton	Competitive Advantages of	Apr	olication Res Summary	ults
rioject	Purification Step	Nanomicro's Products	B inding Capacity	Purity	Recovery
Rabies Virus (RV)	Polishing	High flow rate; More activity recovered	100mg/ml	99.0%	90.0%
Recombinant	Capture	High rigidity; Long Life	10mg/ml	80.0%	95.0%
Expressed Rotavirus	Polishing	High hydrophobicity; High resolution	15mg/ml	99.5%	90.0%
Tetanus	Capture	Low non-specific binding; Excellent selectivity	80mg/ml	80.0%	90.0%
Immunoglobulin(TT)	Intermediate Purification	High binding capacity	15mg/ml	90.0%	85.0%
PCV-Cap2 Protein (Insect baculovirus expression)	Capture	High binding capacity; High Resolution	10mg/ml	90.0%	80.0%
Pertussis Protein	Capture	Special selectivity	5-10mg/ml	PT>85.0% FHA>90.0%	85.0%
(PT, FHA)	Capture	High salt tolerancy (300mM NaCl); Special selectivity; High Resolution	20mg/ml	PT>85.0% FHA>95.0%	80.0%
Lentivirus (LV)	Capture	High binding capacity; High recovery	5-10mg/ml	PT>85.0% FHA>90.0%	30.0%
Plasmid	Polishing	High binding capacity; High recovery	5mg/ml	99.0%	60.0%

^{*} For reference only. Results obtained based on specific sample and separation strategies. Please consult our Application Specialist for more information or assistance

Abbreviations

Monodisperse particles

Particles having a uniform distribution of size or diameter. provide consistency in pore size, surface properties, and chromatography peak shape.

Column Materials

SS: Stainless Steel (Typical Unless otherwise indicated)

PP: Polypropylene

GL: Glass

Product Names or and Descriptions

Uni: Monodisperse Media

NM: Non-monodisperse Media

NP: Non-porous

Functional Groups or Bonded Phase

C18: Octadecyl group bonded silicaC8: Octyl group bonded silica Butyl

C4: group bonded silica

Silica: Silica without bonded groups

NH₂ or Amino: Propylamino or amino

CN or Cyano: Propylcyano or cyano

Diol: Diol or propanediol

Phenyl: Phenyl or propylphenyl

Butyl: Butyl

IDA: -N(CH2COOH)2

NTA: -N(CH₂COOH)₃

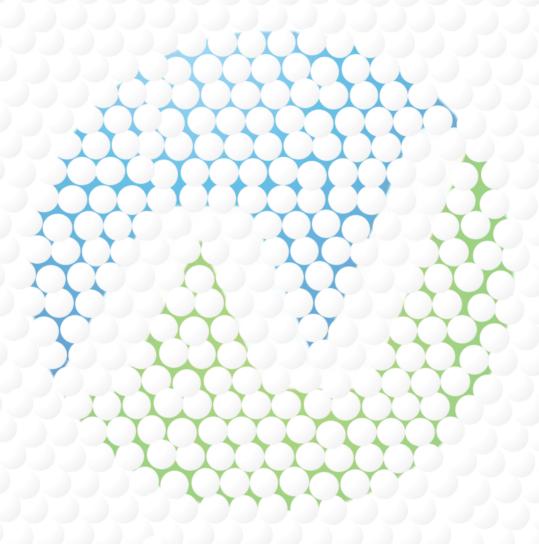
SCX: -(SAXCH₂)₃SO³⁻

WCX: -CH2COO

SAX: -CH₂N⁺(CH₃)₃

WAX: -CH₂CH₂N(C₂H₃)₂

HILIC: Hydrophilic interaction chromatography


Abbreviations

Trademark	Abbr.	Trademark	Abbr.
Uni-XXX	U	Nano SP	NAP
UniSil	US	UniMab	UMB
UniRPC	UR	NanoMab	NMB
UniGel	UG	UniIDA	IDA
UniCM	UC	UniNTA	NTA
UniSP	USP	NM	NM
UniDEAE	UD	UniMC	UMC
UniQ	UQ	UniCharial OD	UOD
UniMSP	UM	UniBPC	UB
UniPS	UPS	NM-BPC	NMBPC
UniPSN	UPN	UniH	UNH
UniPSA	UPA	UniCore CM	UCC
UniPA	UP	UniCore SP	UCP
UniPMM	UPM	UniCore DEAE	UCD
UniHIC	UH	UniCore Q	UCQ
Nano S	NAS	UniHR Phenyl	UHP
Nano Q	NAQ	UniPhenyl	UPH
Nano CM	NAC	NanoHR Phenyl	NHP
Nano DEAE	NAD	NanoHR Butyl	NHB
UniIDA	IDA	NanoButyl	NBU
UnNTA	NTA	NanoPhenyl	NPH
UniPB	UPB	MagneStar MS	MS
NMSil	NS	MagneStar MP	MP

Registered Trademark®

Uni®, UniPS®, UniSil®, UniButyl®, UniMab®, UniCM®, UniDEAE®, UniGel®, UniPhenyl®, UniCore®, UniQ®, NanoSP®, NanoDEAE®, UniChiral®, UniPB®

All of above Registered trademarks belong to Suzhou Nanomicro Technology., Ltd

Contact us:

China & International

9

2 Baichuan Street, Suzhou Industrial Park, Jiangsu 215123 CHINA

Tel: (86) 0512-6295 6000 or 400-828-1622

@

E-mail: info@nanomicrotech.com

FAX

Fax: (86) 0512-6295 6018

Website: www.nanomicrotech.com

Scan us:

